@}eret

How to use Timer / Counter
in W7100A

Version 1.0

6‘7 IZnet

© 2011 WIZnet Co., Inc. All Rights Reserved.
For more information, visit our website at http://www.wiznet.co.kr

© Copyright 2011 WiZnet Co., Inc. All rights reserved. ver.1.0

http://www.wiznet.co.kr/

@ IZnet

Table of Contents

Table Of CONEENESonuiniiiiii ittt et eeaeeaeeneaens 2
I (311 o T [¥ ot 4 o] o I RN 4
2 B (12T 0 o T | = o O 4
2.1 Timer0 8bit Timer, Software Gatedccvoiiiiiiiiiiiiiiiiiiiii e eas 6
2.2 Timer0 8bit Timer, Hardware Gatedcccviiiiiiiiiiiiiiiiiiiii i eeeans 7
2.3 Timer0 8bit Counter, Software Gatedcccvviiiiiiiiiiiiiiiiiii e 7
2.4 Timer0 8bit Counter, Hardware Gatedccoviiiiiiiiiiiiiiiiiiiiiiiiii i eeeaes 8
2.5 Timer0 16bit Timer, Software Gatedccciviiiiiiiiiiiiiiiii e 9
2.6 Timer0 16bit Timer, Hardware Gated........ccoviiiiiiiiiiiiiiiiiiiiiiiiiiii i eeeaes 9
2.7 Timer0 16bit Counter, Software Gated........ccoviiiiiiiiiiiiiiiiiiiiiiii e, 10
2.8 Timer0 16bit Counter, Hardware Gated.........ccccviiiiiiiiiiiiiiiiiiiiiiiiiiineennns 10
2.9 Timer0 8bit Auto Reload Timer, Software Gatedcccceeviiiiiiiiiiiiiinnnnns 11
2.10 Timer0 8bit Auto Reload Timer, Hardware Gatedc.cccevviiiiiiiiiiiiinnannns 12
2.1 Timer0 8bit Auto Reload Counter, Software Gated..........ccovvviiiiiiiiiinnnnnn. 12
2.12 Timer0 8bit Auto Reload Counter, Hardware Gated..........cccoeeviiiiiiiiinnnnn. 13
2.13 Timer0 Two 8-bit Timer, Software Gatedcccceviiiiiiiiiiiiiiiiiiiiii s 14
2.14 Timer0 Two 8-bit Timer, Hardware Gatedcccvviiiiiiiiiiiiiiiiiiiiiiiiineeenns 14
2.15 Timer0 Two 8-bit Counter, Software Gated........ccocviviiiiiiiiiiiiiiiiiiiiiienanns 15
2.16 Timer0 Two 8-bit Counter, Hardware Gated........ccccciiiiiiiiiiiiiiiiiiiiiienenns 16
K T 8110 1= g 00T) o= N 18
3.1 Timer1 8bit Timer, Software Gatedccciviiiiiiiiiiiiiiiiiii e 19
3.2 Timer1 8bit Timer, Hardware Gatedccviiiiiiiiiiiiiiiiiiiii i ceiieeeens 20
3.3 Timer1 8bit Counter, Software Gatedccvviiiiiiiiiiiiiiiiiiii s 20
3.4 Timer1 8bit Counter, Hardware Gatedccoiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeens 21
3.5 Timer1 16bit Timer, Software Gatedccceiiiiiiiiiiiiiiiiiiiiii e, 21
3.6 Timer1 16bit Timer, Hardware Gated........ccciviiiiiiiiiiiiiiiiiiiiiiiiiieiieeeens 22
3.7 Timer1 16bit Counter, Software Gated.........ccooiiiiiiiiiiiiiiiiiiiiiiiii e, 23
3.8 Timer1 16bit Counter, Hardware Gated..........cceiviiiiiiiiiiiiiiiiiiiiiiiiiie e, 23
3.9 Timer1 8bit Auto Reload Timer, Software Gatedccccoviiiiiiiiiiiiiinnnnn, 24
3.10 Timer1 8bit Auto Reload Timer, Hardware Gatedccoevviiiiiiiiniiiinnenns 25
3.11 Timer1 8bit Auto Reload Counter, Software Gated..........cccvvviiiiiniiiinnnnnns 25
3.12 Timer1 8bit Auto Reload Counter, Hardware Gated..........ccccceevviiiiiiinnnnnn. 26
N 11 T 27 0o U g1 =] N 28
4.1 Timer2 16bit Auto Reload Timer.....c.ciiiiiiiiiiiiiiiiiiiiiiiiiier s 30
4.2 Timer2 16bit up/down Auto Reload Counterccceviiiiiiiiiiiiineeiiininnnnns 30

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0 2

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}eret

4.3 Timer2 16bit Capture TiMer....c.viuii ittt reeeeeaeas 31
4.4 Timer2 16bit Capture COUNTErcvuiiiiiiiiiiiiiii i eeeeeeeeenenas 32
4.5 Timer2 Baud Rate Generator.......ccviiiiiiiiiiiiiiiii i eeeeeeeas 33
oI Y (el g Ve [o < B B (11 1= (O PP PP PPN 34
5.1 Watchdog Timer for Interrupt Application.......c.eeveiiiiiiiiiiiiiiiiininnennnenns 34
5.2 Watchdog Timer for Reset Applicationcceevieiiiiiiiiiiiiiiiiiiieieneennenns 35
6 RUNNING EXAMPLE...ueiiiiiiiii i ettt e e e aes 37
6.1 Make @ KEIL PrOJEC.c.uinuiiiiiiiiiii ittt e e ceeeeeas 37
6.2 Make a HEX file with compile.....ccooiiiiiiiiiiiiiiiiii e 38
6.3 Download the HEX file to iIMCU7100EVBccoiiiiiiiiiiiiiiiiiiniiiiiinieieennes 38
6.4 Run the Timer/COUNLErviuiitiitiiiiiiii e eeeeaeaaas 39
Document History INfOrmationc.eeeeieieiiieiiiiiiiei e ereeeeeeneeeneeeneeeneaneennnenns 40

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0 3

VOO LZM Ul 48)unos/iswii] asn 0} MO}

G’V}Znet

1 Introduction

This Application Note explains about the internal Timer/Counter_0, 1, and 2 of W7100, Watchdog Timer,
and basic example codes. Please refer to the W7100 data sheet for more details on the W7100 Timer/
Counter related Register.

The examples that will appear later on shows the GPIO port PO_3 and P0_4 toggling by using
Timer/Counter of W7100. Since P0_3 and P0_4 of iMCU7100EVB are connected with LED, use the
example code to connect PO_3 with LED, and LED will blink. Note that because of the rapidly working
Timer, the LED looks like it is on all the time. All example codes are written based on C language and
KEIL compiler. (Note: User must check the available GPIO pin because the GPIO pins of W7100A QFN
64pin package are different from the LQFP 100pin package.)

2 TimerQ/Counter0

Before using Timer/Counter, this section will describe the structure of Timer/Counter. Fig.2.1 shows
the structure of Timer0/CounterO Mode0: 8-Bit Timer/Counter with a prescaler. The TLO’s 5bit used for
prescaler and THO’s 8bit is used for Timer/Counter. From the figure, 88.4736MHz is the internal clock
speed, TO is the external counter input, and TMOD.3 is the Software Gate Control bit. Also, GATEO is the
Hardware Gate Control pin, and TCON.4 is the Timer0 Start bit.

88.4736MHz

> 1/12 [TMOD.2:0

— .4/ TLO THO
;@ B #| TCON.5 —»
I 5 bit 8 bit
TO
| TMDD.2:1T/. :
TCON.4
TMOD.3 [
GATED

<Fig.2.1> Timer/Counter0, Mode0: 8-Bit Timer/Counter

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0 4

VOO LZM Ul 48)unos/iswii] asn 0} MO}

G’V}Znet

Fig.2.2 is the structure of TimerO/Counter0 Mode1: 16-Bit Timer/Counter; it operates as a 16bit

Timer/Counter using TLO’s 8bit and THO’s 8bit.

88,4736MH
Dz_, 1113 |TMOD.220
l / TLO THO
, @ 2 —p TCOM.5
- T/ | Mode1 8bit| 8 bit
—> TMOD. 2=1 |
TCON. 4
TMOD.3 —
GATED

<Fig.2.2> Timer/Counter0, Mode1: 16-Bit Timer/Counter

Fig.2.3 shows the structure of TimerQ/Counter0 Mode2: 8-Bit Timer/Counter with Auto-Reload. If an
interrupt occurs during this mode, reload the saved value of THO register to the TLO register. Input the

initial value in TLO, and for THO input the value that will reload when an interrupt is occurred.

88.4736MH
o | 1/12 [TMOD.2:0
1 .A/ TLO
T/ , ® g » TCOM.5 —»
| B bit
TO
TMOD. 2=1 J
> X Set Interrupt
TCON.4 request
TMOD. 3
THO
8 bit
GATED

<Fig.2.3> Timer/Counter0, Mode2: 8-Bit Timer/Counter with Auto-Reload

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0 5

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}Znet

Fig.2.4 shows the structure of Timer0/Counter0 Mode3: Two 8-Bit Timer/Counter. For this mode, Timer1
and Timer0 is operated using both THO register and TLO register simultaneously. The interrupts can

respectively occur depending on Timer0 and Timer1. TCON.6 is the START bit of Timer1.

’/(THO
| ® » s TCON.7 |—»
I 8 bit
4 Interrupt
TCON.6 request
BB.4736MHz TMOD.2=0
> 112 k
L4 J TLO
T/. | ® > » TCON.5 | —»
| 8 bit
TO
| TMOD.2=1
Interrupt
TCDDN A request
TMOD.3

<Fig.2.4> Timer/Counter0, Mode3: Two 8-Bit Timers/Counters

The next section will explain the example codes for Timer/Counter0 above.

2.1 TimerO 8bit Timer, Software Gated

void main(void)

{
TMOD = 0x00; //Timer0 mode0 8bit Timer, Software Gated
THO = 0; TLO = 0; //THO, TLO setting
ETO = 1; //Enable Timer0 Interrupt
EA=1; // Enable Global Interrupt
TRO = 1; //Timer0 Start
while(1);
3

void int_test(void) interrupt 1

{
EA=0;
TFO = 0; //TimerQ Interrupt Flag reset
P0_3 = ~P0_3; //Toggling PO_3

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0 6

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}eret

EA=1;
3

Set Timer0 to ModeO 8bit timer, Software Gated through the TMOD register, and set the interrupt
occurrence cycle of Timer0 interrupt using THO and TLO. After that, start TimerQ by setting TRO bit. If an
interrupt occurs, reset the Timer0 interrupt flag by using interrupt processing function; then execute

the action the user has set. In this document Port 0.3 is set to toggle.

2.2 TimerO 8bit Timer, Hardware Gated

void main(void)

{
TMOD = 0x08; //Timer0 mode0 8bit Timer, Hardware Gated
THO = 0; TLO = 0; //THO, TLO setting
ETO =1; // Enable TimerO Interrupt
EA=1; // Enable Global Interrupt
TRO = 1; //Timer0 Start
while(1);
}

void int_test(void) interrupt 1

{
EA = 0;
TFO = 0; //Timer0 Interrupt Flag reset
PO_3 = ~P0_3; //Toggling PO_3
EA=1;
}

All the steps are the same as section 2.1 except the part for Hardware Gating Control of TMOD

register. In this mode, Timer0O operates only when the GATEO pin is Set.

2.3 TimerO 8bit Counter, Software Gated

void main(void)
{
TMOD = 0x04; //Timer0 mode0 8bit Counter, Software Gated
THO = 0; TLO = 0; //THO, TLO setting
ETO=1; //Enable Timer0 Interrupt
EA=1; //Enable Global Interrupt
TRO = 1; //Timer0 Start

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0 7

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}eret

while(1);
3

void int_test(void) interrupt 1

{
EA=0;
TFO = 0; //TimerQ Interrupt Flag reset
PO_3 = ~P0_3; //Toggling PO_3
EA=1;
3

Set TimerO to ModeO 8bit Counter, Software Gated through the TMOD register, and set the interrupt
occurrence cycle of TimerO using THO and TLO. After that, start CounterO by setting TRO bit. Start
counting after confirming the input in TO pin. If an interrupt occurs, reset Timer0Q the interrupt flag by
using interrupt processing function; then execute the action the user has set. In this document Port 0.3

is set to toggle.

2.4 TimerO 8bit Counter, Hardware Gated

void main(void)

{
TMOD = 0x0C; //Timer0 mode0 8bit Counter, Hardware Gated
THO = 0; TLO = 0; //THO, TLO setting
ETO=1; // Enable TimerO0 Interrupt
EA=1; // Enable Global Interrupt
TRO = 1; //Timer0 Start
while(1);
}

void int_test(void) interrupt 1

{
TFO = 0; //Timer0 Interrupt Flag reset
PO_3 = ~P0_3; //Toggling PO_3

3

All the steps are the same as section 2.3 except the part for Hardware Gating Control of TMOD register.

In this mode, Timer0 operates only when the GATEO pin is Set.

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0 8

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}Znet

2.5 Timer0 16bit Timer, Software Gated

void main(void)
{
TMOD = 0x01; //Timer0 mode1 16bit Timer, Software Gated
THO = 0; TLO = 0; //THO, TLO setting
ETO = 1; //Enable Timer0 Interrupt
EA=1; //Enable Global Interrupt
TRO = 1; //Timer0 Start
while(1);
3
void int_test(void) interrupt 1
{
EA=0;
TFO = 0; //TimerQ Interrupt Flag reset
P0_3 = ~P0_3; //Toggling PO_3
EA=1;
3

Set Timer0 to Mode1 16bit Timer, Software Gated through the TMOD register, and set the interrupt
occurrence cycle of TimerO using THO and TLO. After that, start Timer0 by Setting TRO bit. If an
interrupt occurs, reset the TimerQ interrupt flag by using interrupt processing function; then execute

the action the user has set. In this document Port 0.3 is set to toggle.

2.6 Timer0 16bit Timer, Hardware Gated

void main(void)

{
TMOD = 0x09; //Timer0 mode1 16bit Timer, Hardware Gated
THO = 0; TLO = 0; //THO, TLO setting
ETO=1; //Enable TimerO0 Interrupt
EA=1; //Enable Global Interrupt
TRO = 1; //Timer0 Start
while(1);
}

void int_test(void) interrupt 1

{

EA = 0;

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0 9

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}eret

TFO = 0; //TimerQ Interrupt Flag reset
PO_3 = ~P0_3; //Toggling PO_3
EA=1;

3

All the steps are the same as section 2.5 except the part for Hardware Gating Control of TMOD

register. In this mode, Timer0O operates only when the GATEO pin is Set.

2.7 Timer0 16bit Counter, Software Gated

void main(void)

{
TMOD = 0x05; // TimerO mode1 16bit Counter, Software Gated
THO = 0; TLO = 0; //THO, TLO setting
ETO =1; //Enable TimerO0 Interrupt
EA=1; //Enable Global Interrupt
TRO = 1; //Timer0 Start
while(1);
}

void int_test(void) interrupt 1

{
EA = 0;
TFO = 0; //Timer0 Interrupt Flag reset
PO_3 = ~P0_3; //Toggling PO_3
EA=1;
}

Set TimerO to 16bit Counter, Software Gated through the TMOD register, and set the interrupt
occurrence cycle of TimerO using THO and TLO. After that, start CounterO by Setting TRO bit. Start
Counting after confirming the input in TO pin. If an interrupt occurs, reset the TimerO interrupt flag by

using interrupt processing function; then execute the action the user has set. In this document Port 0.3

is set to toggle.

2.8 Timer0 16bit Counter, Hardware Gated

void main(void)
{
TMOD = 0x0D; // TimerO mode1 16bit Counter, Hardware Gated

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0

10

VOO LZM Ul 48)unos/iswii] asn 0} MO}

G’V}Znet

THO = 0; TLO = 0; //THO, TLO setting
ETO = 1; //Enable Timer0 Interrupt
EA=1; //Enable Global Interrupt
TRO = 1; //Timer0 Start
while(1);
3

void int_test(void) interrupt 1

{
EA=0;
TFO = 0; //TimerQ Interrupt Flag reset
P0_3 = ~P0_3; //Toggling PO_3
EA=1;
3

All the steps are the same as section 2.7 except the part for Hardware Gating Control of TMOD

register. In this mode, Timer0 operates only when the GATEO pin is Set.

2.9 TimerO 8bit Auto Reload Timer, Software Gated

void main(void)

{
TMOD = 0x02; // TimerO mode2 8bit Auto Reload, Software Gated
THO = Reload Value; //Reload value THO setting
TLO = Initial Value; //Initial value TLO setting
ETO =1; //Enable TimerO0 Interrupt
EA=1; //Enable Global Interrupt
TRO = 1; //Timer0 Start
while(1);
}

void int_test(void) interrupt 1

{
EA = 0;
TFO = 0; //TimerO Interrupt Flag reset
PO_3 = ~P0_3; //Toggling PO_3
EA=1;
}

11

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}Znet

void main(void)
{
TMOD = 0x06; // TimerO mode2 8bit Auto Reload, Software Gated
THO = Reload Value; //Reload value THO setting
TLO = Initial Value; //Initial value TLO setting
ETO=1; //Enable TimerO0 Interrupt

12

Set TimerO to 8bit Auto Reload Timer, Software Gated through the TMOD register, and set the interrupt
occurrence cycle of TimerQ using THO and TLO. Set the Reload value to THO and initial value to TLO.
After that, start TimerQ by Setting TRO bit. Start Counting after confirming the input in TO pin. If an
interrupt occurs, reset the TimerO interrupt flag by using interrupt processing function; then execute

the action the user has set. In this document Port 0.3 is set to toggle.

2.10 TimerO 8bit Auto Reload Timer, Hardware Gated

void main(void)

{
TMOD = 0x0A; // Timer0 mode2 8bit Auto Reload, Hardware Gated
THO = Reload Value; //Reload value THO setting
TLO = Initial Value; //lnitial value TLO setting
ETO = 1; //Enable Timer0 Interrupt
EA=1; //Enable Global Interrupt
TRO = 1; //Timer0 Start
while(1);
3

void int_test(void) interrupt 1

{
EA=0;
TFO = 0; //Timer0 Interrupt Flag reset
P0_3 = ~P0_3; //Toggling PO_3
EA=1;
3

All the steps are the same as section 2.9 except the part for Hardware Gating Control of TMOD register.

In this mode, Timer0 operates only when the GATEO pin is Set.

2.11 TimerO 8bit Auto Reload Counter, Software Gated

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}Znet

EA=1; //Enable Global Interrupt
TRO = 1; //Timer0 Start
while(1);

3

void int_test(void) interrupt 1

{
EA=0;
TFO = 0; //TimerQ Interrupt Flag reset
P0_3 = ~P0_3; //Toggling PO_3
EA=1;
3

Set TimerO to 8bit Auto Reload Timer, Software Gated through the TMOD register, and set the interrupt
occurrence cycle of Counter0O using THO and TLO. Set the Reload value to THO and initial value to TLO.
After that, start CounterO by Setting TRO bit. If an interrupt occurs, reset the TimerO interrupt flag by

using interrupt processing function; then execute the action the user has set. In this document Port 0.3

is set to toggle.

2.12 TimerO 8bit Auto Reload Counter, Hardware Gated

void main(void)

{
TMOD = OxOE; // TimerO mode2 8bit Auto Reload, Hardware Gated
THO = Reload Value; //Reload value THO setting
TLO = Initial Value; //Initial value TLO setting
ETO =1; //Enable TimerO0 Interrupt
EA=1; //Enable Global Interrupt
TRO = 1; //Timer0 Start
while(1);
}

void int_test(void) interrupt 1

{
EA = 0;
TFO = 0; //TimerO0 Interrupt Flag reset
PO_3 = ~P0_3; //Toggling PO_3
EA=1;
}

13

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}eret

All the steps are the same as section 2.11 except the part for Hardware Gating Control of TMOD register.

In this mode, Timer0 operates only when the GATEO pin is Set.

2.13 Timer0 Two 8-bit Timer, Software Gated

void main(void)

{
TMOD = 0x03; // Timer0 mode3 Split timer, Software Gated
THO = 0; TLO = 0; //THO, TLO setting
ETO =1; ET1 =1; //Enable TimerQ, Timer1 Interrupt
EA=1; //Enable Global Interrupt
TRO =1; TR1 =1; //Timer0, Timer1 Start
while(1);

3

void int_test1(void) interrupt 1
{
EA=0;
TFO = 0; //TimerQ Interrupt Flag reset
PO_3 = ~P0_3; //Toggling PO_3
EA=1;
3
void int_test2(void) interrupt 3
{
EA=0;
TF1 = 0; //TimerQ Interrupt Flag reset
PO_4 = ~P0_4; //Toggling PO_4
EA=1;

3

Set TMOD register to Mode3 Split timer, Software Gated, and set the interrupt occurrence cycle of
Timer0/Timer1 using THO and TLO. After that set TRO and TR1 to operate the Split Timer. If the interrupt
of Timer0/Timer1 occurs, reset the Timer0/Timer1 interrupt; then execute the action the user has set.

In this document PO_3 and P0_4 is each set to toggle.

2.14 Timer0 Two 8-bit Timer, Hardware Gated

void main(void)

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0
14

VOO LZM Ul 48)unos/iswii] asn 0} MO}

G’V}Znet

{
TMOD = 0x0B; // Timer0 mode3 Split timer, Software Gated
THO = 0; TLO = 0; //THO, TLO setting
ETO =1; ET1 =1; //Enable Timer0, Timer1 Interrupt
EA=1; //Enable Global Interrupt
TRO =1; TR1 =1; //Timer0, Timer1 Start
while(1);

3

void int_test1(void) interrupt 1

{
EA=0;
TFO = 0; //TimerO0 Interrupt Flag reset
P0_3 = ~P0_3; //Toggling PO_3
EA=1;

3

void int_test2(void) interrupt 3

{
EA=0;
TF1 = 0; //TimerQ Interrupt Flag reset
P0_4 = ~-P0_4; //Toggling PO_4
EA=1;

All the steps are the same as section 2.13 except the part for Hardware Gating Control of TMOD

register. In this mode, Timer0 operates only when the GATEO pin is Set.

2.15 Timer0O Two 8-bit Counter, Software Gated

void main(void)

{
TMOD = 0x07; // Timer0 mode3 Split timer, Software Gated
THO = 0; TLO = 0; //THO, TLO setting
ETO=1; ET1 =1; //Enable Timer0, Timer1 Interrupt
EA=1; //Enable Global Interrupt
TRO=1; TR1 =1; //Timer0, Timer1 Start
while(1);

}

15

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}Znet

void int_test1(void) interrupt 1
{

EA=0;

TFO = 0;

P0_3 = ~P0_3;

EA=1;
3
void int_test2(void) interrupt 3
{

EA=0;

TF1 = 0;

P0_4 = ~-P0_4;

EA=1;

3

//TimerQ Interrupt Flag reset
//Toggling PO_3

//Timer0 Interrupt Flag reset
//Toggling PO_4

VOO LZM Ul 48)unos/iswii] asn 0} MO}

Set TMOD register to Mode3 Split Counter, Software Gated, and set the interrupt occurrence cycle of
Counter0/Counter1 using THO and TLO. After that set TRO and TR1 to operate the Split Timer. If an
interrupt of Counter0/Counter1 occurs, reset the Counter0/Counter1 interrupt; then execute the action

the user has set. In this document PO_3 and P0_4 is each set to toggle.

2.16 Timer0 Two 8-bit Counter, Hardware Gated

void main(void)

{
TMOD = 0xOF;
THO = 0; TLO = 0;
ETO=1; ET1 =1;
EA=1;
TRO=1; TR1 =1;
while(1);

}

void int_test1(void) interrupt 1

{

EA = 0;
TFO = 0;
P0O_3 = ~P0_3;

// Timer0 mode3 Split timer, Software Gated
//THO, TLO setting

//Enable Timer0, Timer1 Interrupt
//Enable Global Interrupt
//TimerQ, Timer1 Start

//TimerO Interrupt Flag reset
//Toggling PO_3

© Copyright 2011 WiIZnet Co.,
16

Inc. All rights reserved. ver.1.0

@}Znet

EA=1;
3
void int_test2(void) interrupt 3
{
EA = 0;
TF1 = 0; //TimerQ Interrupt Flag reset
PO_4 = ~P0_4; //Toggling PO_4
EA=1;

All the steps are the same as section 2.15 except the part for Hardware Gating Control of TMOD

register. In this mode, Counter0Q operates only when the GATEOQ pin is Set.

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0
17

VOO LZM Ul 48)unos/iswii] asn 0} MO}

G’V}Znet

3 Timer1/Counter1

Figure 3.1 is the structure of Timer/Counter1 Mode0: 8-Bit Timer/Counter. The structure is very similar
to Mode0 of TimerQ except some registers. The 88.4736MHz is the internal clock speed and T1 is the
external counter input. TMOD.7 is the Software Gate Control bit, GATE1 is the external Hardware Gate

Control pin, and TCON.6 is the Timer1 Start bit.

88.4736MHz

D_. 1112 TMOD.6=0

¥

' S L1 | TH
e TCON.7 —»
mnu.a:{

T1 [5 bit B bit
|
- Interrupt
TCON. & request
TMOD.7
GATE1

<Fig.3.1> Timer/Counter1, Mode0: 8-Bit Timer/Counter

Figure 3.2 is the structure of Timer/Counter1 Mode1: 16-Bit Timers/Counters. The structure is very

similar to Mode 1 of TimerQ except the some registers.

88.4736MH
DI_. 1717 |TMOD.620
l / TL1 TH1
| @ P » TCON.7 —»
4 T/ | 8bit | 8 bit
& |
> TMOD.6=1 Interrupt
TCON. & request
TMOD.7
GATE1
<Fig.3.2> Timer/Counter1, Mode1: 16-Bit Timers/Counters
.|
© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0

18

VOO LZM Ul 48)unos/iswii] asn 0} MO}

G’V}Znet

Fig.3.3 shows the structure of Timer/Counter1 Mode2: 8-Bit Timer/Counter with Auto-Reload. Like the

Mode2 of Timer0, Reload the value of TH1 to TL1 if an interrupt occurs.

88.4736MHz 1115 |TMOD.620
l TL
-Al/ . > ! » TCON.7 —»
2 T/ | 8 bit
— TMOD.6=1 .
X Set Interrupt
TCON.6& request
TMOD.7 = '
TH1
8 bit
GATE1
<Fig.3.3> Timer/Counter1, Mode2: 8-Bit Timer/Counter with Auto-Reload
Please refer to Mode3 of Timer0 for information on Timer/Counter1 Mode3.
3.1 Timer1 8bit Timer, Software Gated
void main(void)
{
TMOD = 0x00; //Timer1 mode0 8bit Timer, Software Gated
TH1 = 0; TL1 = 0; //TH1, TL1 setting
ET1 =1; //Enable Timer1 Interrupt
EA=1; // Enable Global Interrupt
TR1 =1; //Timer1 Start
while(1);
3

void int_test(void) interrupt 3

{
EA=0;
TF1 = 0; //TimerQ Interrupt Flag reset
P0_3 = ~P0_3; //Toggling PO_3
EA=1;
3

Set Timer1 to 8bit timer, Software Gated through the TMOD register, and set the interrupt occurrence

cycle of Timer1 using TH1 and TL1. After that, start Timer1 by Setting TR1 bit. If an interrupt occurs,

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0
19

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}Znet

reset the Timer1 interrupt flag by using interrupt processing function; then execute the action the user

has set. In this document Port 0.3 is set to toggle.

3.2 Timer1 8bit Timer, Hardware Gated

void main(void)

{
TMOD = 0x80; //Timer1 mode0 8bit Timer, Hardware Gated
TH1 = 0; TL1 = 0; //TH1, TL1 setting
ET1 =1; // Enable Timer1 Interrupt
EA=1; // Enable Global Interrupt
TR1 =1; //Timer1 Start
while(1);
3

void int_test(void) interrupt 3

{
EA=0;
TF1 = 0; //TimerQ Interrupt Flag reset
PO_3 = ~P0_3; //Toggling PO_3
EA=1;
3

All the steps are the same as section 3.1 except the part for Hardware Gating Control of TMOD

register. In this mode, Timer1 operates only when the GATE1 pin is Set.

3.3 Timer1 8bit Counter, Software Gated

void main(void)
{
TMOD = 0x40; //Timer1 mode0 8bit Counter, Software Gated
TH1 = 0; TL1 = 0; //TH1, TL1 setting
ET1 =1; //Enable Timer1 Interrupt
EA=1; //Enable Global Interrupt
TR1 =1; //Timer1 Start
while(1);
}
void int_test(void) interrupt 3

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0
20

VOO LZM Ul 48)unos/iswii] asn 0} MO}

{
EA=0;
TF1 = 0; //TimerQ Interrupt Flag reset
PO_3 = ~P0_3; //Toggling PO_3
EA=1;
3

Set Timer1 to 8bit Counter, Software Gated through the TMOD register, and set the interrupt
occurrence cycle of Timer1 using TH1 and TL1. After that, start Counter1 by Setting TR1 bit. Start
Counting after confirming the input in T1 pin. If an interrupt occurs, reset the Timer1 interrupt flag by
using interrupt processing function; then execute the action the user has set. In this document Port 0.3

is set to toggle.

3.4 Timer1 8bit Counter, Hardware Gated

void main(void)

{
TMOD = 0xCO0; //Timer1 mode0 8bit Counter, Hardware Gated
TH1 =0; TL1 = 0; //TH1, TL1 setting
ET1 =1; // Enable Timer1 Interrupt
EA=1; // Enable Global Interrupt
TR1 =1; //Timer0 Start
while(1);
}

void int_test(void) interrupt 3

{
EA = 0;
TF1 = 0; //TimerO0 Interrupt Flag reset
PO_3 = ~P0_3; //Toggling PO_3
EA=1;
}

All the steps are the same as section 3.3 except the part for Hardware Gating Control of TMOD

register. In this mode, Counter1 operates only when the GATE1 pin is Set.

3.5 Timer1 16bit Timer, Software Gated

void main(void)

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0
21

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}Znet

void int_test(void) interrupt 3

{

{
TMOD = 0x10; //Timer1 mode1 16bit Timer, Software Gated
TH1 = 0; TL1 = 0; //TH1, TL1 setting
ET1 =1; //Enable Timer1 Interrupt
EA=1; //Enable Global Interrupt
TR1 =1; //Timer1 Start
while(1);
3

EA=0;
TF1 = 0; //Timer0 Interrupt Flag reset
P0_3 = ~P0_3; //Toggling PO_3
EA=1;
3

VOO LZM Ul 48)unos/iswii] asn 0} MO}

Set Timer1 to 16bit timer, Software Gated through the TMOD register, and set the interrupt occurrence
cycle of Timer1 using TH1 and TL1. After that, start Timer1 by Setting TR1 bit. If an interrupt occurs,
reset the Timer1 interrupt flag by using interrupt processing function; then execute the action the user

has set. In this document Port 0.3 is set to toggle.

3.6 Timer1 16bit Timer, Hardware Gated

void main(void)

{
TMOD = 0x90; //Timer1 mode1 16bit Timer, Hardware Gated
TH1 =0; TL1 = 0; //TH1, TL1 setting
ET1 =1; //Enable Timer1 Interrupt
EA=1; //Enable Global Interrupt
TR1 =1; //Timer1 Start
while(1);
}

void int_test(void) interrupt 3
{
EA = 0;
TF1 = 0;

//Timer0 Interrupt Flag reset

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0
22

@}eret

PO_3 = ~P0_3; //Toggling PO_3
EA=1;

3

All the steps are the same as section 3.5 except the part for Hardware Gating Control of TMOD

register. In this mode, Timer1 operates only when the GATE1 pin is Set.

3.7 Timer1 16bit Counter, Software Gated

void main(void)

{
TMOD = 0x50; // Timer1 mode1 16bit Counter, Software Gated
TH1 =0; TL1 = 0; //TH1, TL1 setting
ET1 =1; //Enable Timer1 Interrupt
EA=1; //Enable Global Interrupt
TR1 =1; //Timer1 Start
while(1);
}

void int_test(void) interrupt 3

{
EA = 0;
TF1 = 0; //Timer0 Interrupt Flag reset
PO_3 = ~P0_3; //Toggling PO_3
EA=1;
}

Set Timer1 to 16bit Counter, Software Gated through the TMOD register, and set the interrupt
occurrence cycle of Timer1 using TH1 and TL1. After that, start Counter1 by Setting TR1 bit. Start
Counting after confirming the input in T1 pin. If an interrupt occurs, reset the Timer1 interrupt flag by

using interrupt processing function; then execute the action the user has set. In this document Port 0.3

is set to toggle.

3.8 Timer1 16bit Counter, Hardware Gated
void main(void)

{

TMOD = 0xD0; // Timer1 mode1 16bit Counter, Hardware Gated

VOO LZM Ul 48)unos/iswii] asn 0} MO}

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0
23

G’V}Znet

TH1 =0; TL1 = 0;

//TH1, TL1 setting

ET1 =1; //Enable Timer1 Interrupt
EA=1; //Enable Global Interrupt
TR1 =1; //Timer1 Start
while(1);
3

void int_test(void) interrupt 3

{
EA=0;
TF1 = 0; //TimerQ Interrupt Flag reset
P0_3 = ~P0_3; //Toggling PO_3
EA=1;
3

All the steps are the same as section 3.7 except the part for Hardware Gating Control of TMOD

register. In this mode, Counter1 operates only when the GATE1 pin is Set.

3.9 Timer1 8bit Auto Reload Timer, Software Gated
void main(void)
{
TMOD = 0x20;
TH1 = Reload Value;
TL1 = Initial Value;

// Timer1 mode2 8bit Auto Reload, Software Gated
//Reload value TH1 setting
//lnitial value TL1 setting

ET1 =1; //Enable Timer1 Interrupt
EA=1; //Enable Global Interrupt

TR1 =1; //Timer1 Start

while(1);

void int_test(void) interrupt 3

{
EA = 0;
TF1 = 0; //TimerO Interrupt Flag reset
PO_3 = ~P0_3; //Toggling PO_3
EA=1;
}

24

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}Znet

Set Timer1 to 8bit Auto Reload Timer, Software Gated through the TMOD register, and set the interrupt
occurrence cycle of Timer1 using TH1 and TL1. Set the Reload value to TH1 and initial value to TL1.
After that, start Timer1 by Setting TR1 bit. If an interrupt occurs, reset the TimerQ interrupt flag by
using interrupt processing function; then execute the action the user has set. In this document Port 0.3

is set to toggle.

3.10 Timer1 8bit Auto Reload Timer, Hardware Gated

void main(void)

{
TMOD = 0xAO0; // Timer1 mode2 8bit Auto Reload, Hardware Gated
TH1 = Reload Value; //Reload value TH1 setting
TL1 = Initial Value; //Initial value TL1 setting
ET1 =1; //Enable Timer1 Interrupt
EA=1; //Enable Global Interrupt
TR1 =1; //Timer1 Start
while(1);
3

void int_test(void) interrupt 3

{
EA=0;
TF1 = 0; //Timer0 Interrupt Flag reset
P0_3 = ~P0_3; //Toggling PO_3
EA=1;
3

All the steps are the same as section 3.9 except the part for Hardware Gating Control of TMOD

register. In this mode, Timer1 operates only when the GATE1 pin is Set.

3.11 Timer1 8bit Auto Reload Counter, Software Gated

void main(void)

{
TMOD = 0x60; // Timer1 mode2 8bit Auto Reload, Software Gated
TH1 = Reload Value; //Reload value TH1 setting
TL1 = Initial Value; //Initial value TL1 setting

25

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}Znet

ET1 =1;
EA=1;

TR1 = 1;
while(1);

void int_test(void) interrupt 3
{

EA=0;

TF1 = 0;

P0_3 = ~P0_3;

EA=1;

3

//Enable Timer1 Interrupt
//Enable Global Interrupt
//Timer1 Start

//TimerQ Interrupt Flag reset
//Toggling PO_3

VOO LZM Ul 48)unos/iswii] asn 0} MO}

Set Timer1 to 8bit Auto Reload Timer, Software Gated through the TMOD register, and set the interrupt
occurrence cycle of Counter0 using TH1 and TL1. Set the Reload value to TH1 and initial value to TL1.
After that, start Counter1 by Setting TR1 bit. If an interrupt occurs, reset the Timer0 interrupt flag by

using interrupt processing function; then execute the action the user has set. In this document Port 0.3

is set to toggle.

3.12 Timer1 8bit Auto Reload Counter, Hardware Gated
void main(void)
{
TMOD = OxEO;
TH1 = Reload Value;
TL1 = Initial Value;

// Timer1 mode2 8bit Auto Reload, Hardware Gated
//Reload value TH1 setting
//lnitial value TL1 setting

ET1 =1; //Enable Timer1 Interrupt
EA=1; //Enable Global Interrupt
TR1 =1; //Timer1 Start
while(1);
}

void int_test(void) interrupt 3

{
EA = 0;
TF1 = 0; //TimerO Interrupt Flag reset
PO_3 = ~P0_3; //Toggling PO_3

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0
26

@}eret

EA=1;

3

All the steps are the same as section 3.11 except the part for Hardware Gating Control of TMOD

register. In this mode, Counter1 operates only when the GATE1 pin is Set.

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0
27

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}Znet

4 Timer2/Counter2

Fig.4.1 is the structure of Timer/Counter2 16-Bit Timer/Counter with Auto-Reload. Once the
Timer/Counter starts, an Overflow occurs in the TL2 register and TH2 register, and an interrupt occurs.
88.4736MHz is the internal clock speed and T2 is the external counter input. T2CON.1 is the
Timer/Counter Select bit and T2CON.2 is the Timer2 START bit. The T2EX pin in the right side of Fig.4.1,
is the Timer2 Capture/Reload trigger. It operates at the Falling Edge. The T2CON.3 is the T2EX pin
Enable bit, and T2CON.O0 is the Capture/Reload Select bit that operates on Capture mode when the bit is
1.

88.4736MHz
i 1/12 TTICONJHU

T2CON.1=1

T2CON.2 g\
C—f--
| TL2 TH2
8b 8b
it it T2CON.7
o (e
SRl T]
RLDL RLDH
8 bit 8 bit . '

[]
T2CON.3 T2EX

<Fig.4.1> Timer/Counter2, 16-Bit Timer/Counter with Auto-Reload

Fig.4.2 is the structure of Timer/Counter2 16-Bit Timer/Counter with Capture Mode. When turn on the
capture sign by using the T2CON.3 and the Palling Edge of T2EX pin, each register value of TL2 and TH2
capture into RLDL and RLDH register. The EXF2 is the External Flag that is set to 1 when an external pin

is captured.

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0
28

VOO LZM Ul 48)unos/iswii] asn 0} MO}

G’V}Znet

88.4736MHz
C———w» 1712 'jTZCDNJ:ﬂ

T2CON.1=1

TZCON.2

| TL2 TH2
I T2CON.7— »

8 bit 8 bit

Interrupt
TZCON.3 4£ 4; request

—""\' Eapture RLDL RLDH
—_—

1 | 8bit 8 bit

<Fig.4.2> Timer/Counter2, 16-Bit Timer/Counter with Capture Mode

Fig.4.3 is the structure of Timer2 Baud Rate Generator Mode. Baud Rate Generator can be driven by

both Timer 1 and Timer2. SMODO is the Timer1 Baud Rate Speed Control Bit.

88.4736MHz ,
C———w 1/ _
TZCON.1=0 +—From Timer1 OV
1/2
: EJSMDDD

T2CON.1=1
TZCON.2 g\
— -

| TL2 TH2
Interrupt request L

0

o+
8 bit 8 bit \
a RCLK

|| ﬁ_‘ b L‘F—‘ ——{ 1/16 - RXC

RLDL RLDH

8 bit 8 bit 19
TCLK 1/16 == TAC

-

|
T2CON.3 T2EX

<Fig.4.3> Timer2 for Baud Rate Generator Mode

VOO LZM Ul 48)unos/iswii] asn 0} MO}

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0
29

@}Znet

4.1 Timer2 16bit Auto Reload Timer

void main(void)

{
T2CON = 0x00; // Timer2 16bit up/down Auto Reload
TH2 = MSB Initial Value; //Initial value TH2 setting
TL2 = LSB Initial Value; //Initial value TL2 setting
RLDH = MSB Reload Value; //Reload value RLDH setting
RLDL = LSB Reload Value; //Reload value RLDL setting
ET2 = 1; //Enable Timer2 Interrupt
EA=1; //Enable Global Interrupt
TR2 = 1; //Timer2 Start
while(1);

3

void int_test(void) interrupt 5

{
EA=0;
TF2 = 0; //Timer2 Interrupt Flag reset
P0_3 = ~P0_3; //Toggling PO_3
EA=1;
3

Use T2CON register to set Timer2 to 16bit Auto Reload Timer, and set each MSB and LSB initial value for
TH2 and TL2. Also, set the value that will reload in case of an interrupt in RLDH and RLDL. Then, set the
TR2 bit to start Timer2. If an interrupt occurs, reset the Timer2 interrupt flag by using interrupt

function and execute the action the user has set. In this document Port 0.3 is set to toggle.

4.2 Timer2 16bit up/down Auto Reload Counter

void main(void)
{
T2CON = 0x00; // Timer2 16bit up/down Auto Reload
CT2=1; // Counter mode ON
TH2 = MSB Initial Value; //Initial value TH2 setting
TL2 = LSB Initial Value; //lnitial value TL2 setting
RLDH = MSB Reload Value; //Reload value RLDH setting
RLDL = LSB Reload Value; //Reload value RLDL setting

30

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}eret

ET2 = 1; //Enable Timer2 Interrupt
EA=1; //Enable Global Interrupt
TR2 = 1; //Timer2 Start
while(1);
3

void int_test(void) interrupt 5

{
EA=0;
TF2 = 0; //Timer2 Interrupt Flag reset
P0_3 = ~P0_3; //Toggling PO_3
EA=1;
3

Use T2CON register to set Timer2 to 16bit Auto Reload Timer, and set CT2bit, which is the 2™ bit of
T2CON register, to switch to counter mode. An approach classified by bit is possible, but related codes
other than W7100.h file should be defined. Then, set each MSB and LSB initial value for TH2 and TL2,
and set the value that will Reload in case of an interrupt in RLDH and RLDL. Then, Set TR2 to start
Timer2. If an interrupt occurs, reset the Timer2 interrupt flag by using interrupt function and execute

the action the user has set. In this document Port 0.3 is set to toggle.

4.3 Timer2 16bit Capture Timer

void main()

{
T2CON = 0x00; // Timer2 16bit up/down Auto Reload
EXEN2 = 1; //Enable T2EX pin (Active on Falling edge)
CPRL2 = 1; //Capture mode ON
TH2 = 0; TL2 = 0; // TH2, TL2 setting
RLDH = 0; RLDL = 0; // Clear the Capture variable RLDH, RLDL
EA=1; ET2 = 1; // Interrupt setting
TR2 = 1; // Timer2 Start
while(1);

}

void int_test2(void) interrupt 5

{
EA=0;

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0

31

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}Znet

void main()

{
T2CON = 0x00; // Timer2 16bit up/down Auto Reload
CT2 =1; // Counter mode ON
EXEN2 = 1; // Enable T2EX pin (Active on Falling edge)
CPRL2 = 1; // Capture mode ON
TH2 = 0; TL2 = 0; // TH2, TL2 setting
RLDH = 0; RLDL = 0; // Clear the Capture variable RLDH, RLDL
EA=1; ET2 = 1; // Interrupt setting
TR2 = 1; // Timer2 Start
while(1);

}

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0

32

if (EXF2) // If EXF2 = 1 (Capture Flag)
{
RLDH_tmp = RLDH; // Save the Captured value(RLDH) to temporal variable(RLDH_tmp)

RLDL_tmp = RLDL; // Save the Captured value(RLDL) to temporal variable(RLDL_tmp)
}

EXF2 = 0; // Reset the Capture Flag

TF2 = 0; // Reset the Timer2 Interrupt Flag
PO_3 = ~P0_3; // Toggling PO_3

3

EA=1;

}

Use T2CON register to set Timer2 to 16bit Auto Reload Timer, and set the EXEN2 bit, which is the 3 bit
of T2CON register, to activate the T2EX pin. Note that T2EX pin works at the 1=>0 Transition. Then set
the CPRL2 bit, which is the 0™ bit of T2CON register, to activate Capture mode. An approach classified
by bit is possible for T2CON register, but related codes other than W7100.h file should be defined. Set
the value for TH2 and TL2 to set the interrupt time. After that, set TR2 bit to start Timer2.

When Timer2 is running and the Falling sign (1 => 0) in the T2EX pin is confirmed, Capture the value of
TH2 and TL2, and save them to RLDH and RLDL. When Timer2 interrupt occurs, check whether the
Capture motion occurred. If there is a Capture value, save them each to RLDH_tmp and RLDL_tmp. Then,

Reset the Capture Flag and Timer2 Interrupt Flag. When Timer2 Interrupt occurs, Port 0.3 is set to

toggle.

4.4 Timer2 16bit Capture Counter

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}Znet

ET2 = 0; //Timer2 Interrupt disable
TR2 = 1; // Timer2 Start for Baud Rate Generator
}
[
© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0

33

void int_test2(void) interrupt 5

{
EA=0;
if (EXF2) // If EXF2 = 1 (Capture Flag)
{
RLDH_tmp = RLDH; // Save the Captured value(RLDH) to temporal variable(RLDH_tmp)
RLDL_tmp = RLDL; // Save the Captured value(RLDL) to temporal variable(RLDL_tmp)
3
EXF2 = 0; // Reset the Capture Flag
TF2 = 0; // Reset the Timer2 Interrupt Flag
PO_3 = ~P0_3; // Toggling PO_3
3
EA=1;
3

Use T2CON register to set Timer2 to 16bit Auto Reload Timer, and set the CT2 bit, which is the 1% bit
of T2CON register, to activate the T2EX pin. Note that T2EX pin works at the 1=>0 Transition. Then set
the CPRL2 bit, which is the 0™ bit of T2CON register, to activate Capture mode. An approach classified
by bit is possible for T2CON register, but related codes other than W7100.h file should be defined. Set
the value for TH2 and TL2 to set the interrupt time. After that, set TR2 bit to start Timer2.

When Counter2 is running and the Falling sign (1 => 0) in the T2EX pin is confirmed, Capture the value
of TH2 and TL2, and save them to RLDH and RLDL. When Timer2 interrupt occurs, check whether the
Capture motion occurred. If there is a Capture value, save them each to RLDH_tmp and RLDL_tmp. Then,
Reset the Capture Flag and Timer2 Interrupt Flag. When Timer2 Interrupt occurs, Port 0.3 is set to

toggle.

4.5 Timer2 Baud Rate Generator

void main()

{
T2CON = 0x00; // Timer2 16bit up/down Auto Reload
RCLK = 1; // UARTO receiver is clocked by Timer2 overflow pulses
TCLK = 1; // UARTO transmitter is clocked by Timer2 overflow pulses
TH2 = 0; TL2 = 0; // TH2, TL2 setting

RLDH = OxFF; RLDL = OxES; //Setting for Baud Rate 115200bps

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}Znet

This mode is for the Baud Rate Generator of UART. This section explains only about the value for
Timer2. Please refer to W7100 Datasheet for more information on other registers for UART setting. First,
initialize T2CON; then set TCLK and RCLK, which are the 4™ and 5" bit of T2CON, to the Baud Rate
Generator of UART. Also, set the initial value for TH2 and TL2. For Baud Rate setting, set each value for
RLDH and RLDL. In the example, the RLDH and RLDL are set to OxFF and OxE8 respectively because the
Baud Rate was set to 115200bps. Please refer to W7100 Datasheet section 6.UART for more
details on other Baud Rate settings. Then, disable Timer2 Interrupt and set the TR2 bit, which is the 2"
bit of T2CON register, to run Baud Rate Generator.

5 Watchdog Timer

The Fig.5.1 is the structure of Watchdog Timer. Set the WD1 and WDO bit of CKCON register to decide
the Timeout cycle. The timeout occurs periodically, and interrupt can occur depending on the setting of
EWT. WDIF is set once an interrupt occurs. Set EWT so that W7100 can reset. WTRF is set when Reset
occurs. If RWT is set periodically before Timeout occurs, then the Watchdog Timer initializes periodically
and Timeout does not occur. The CLK is the internal clock of 88.4736MHz. User must done the timed

access procedure (TA = OxAA; TA = 0x55;) before clear or set the watchdog registers.

l.c:m,}—b 2!t 2 2} p 2°
L J

WD1 ——»

h 4

Timeout Selector

WDIF Watchdog
EWDlI —— Interrupt

512 clk Delay RESET

EWT

WD0 —»

<Fig.5.1> Watchdog Timer Structure

5.1 Watchdog Timer for Interrupt Application

void main()
{
CKCON = 0xCO0; / /Watchdog Interval setting
© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0

34

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}Znet

TA = OxAA; //Timed Access Registers setting to prevents the Accidental writes
TA = 0x55; //For more detail, please refer to the W7100 datasheet
WDCON = 0x00; / /Initialize the WDCON

EA=1; //Global Interrupt Enable

TA = OxAA;

TA = 0x55;

EWDI = 1; //Enable the Watchdog Interrupt

TA = OxAA;

TA = 0x55;

EWT = 0; //Disable the W7100 Reset by Watchdog Timeout
while(1);

void int_test3(void) interrupt 12
{
EA=0;
TA = OxAA;
TA = 0x55;
WDIF = 0; / /Reset the Watchdog Timer Interrupt Flag
P0O_3 = ~-P0_3; //Toggling the PO_3
EA=1;
3

This example shows how to use the Watchdog Timer like a regular Timer. Use 6 and 7" register of
CKCON register to set the Watchdog Interval, and set Timed Access Register to prepare for unpredicted
situations. Initialize the WDCON register, enable the Global Interrupt, and set EWDI, which is the 4™ pit
of EIE register, to enable the Watchdog Interrupt. Since this example does not use Reset by Watchdog
Timer, EWT bit should stay disabled. Also, there are no other settings for running the Timer because the
Watchdog Timer is always turned on since the board is turned on or reset. If Watchdog interrupt occurs,

PO_3 toggles by using interrupt clearing function.

5.2 Watchdog Timer for Reset Application

void main()
{
CKCON |= 0xCO0; //Watchdog Interval setting
TA = OxAA; //Timed Access Registers setting to prevents the Accidental writes
TA = 0x55; //For more detail, please refer to the W7100 datasheet
© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0

35

VOO LZM Ul 48)unos/iswii] asn 0} MO}

@}Znet

WDCON = 0x00; / /Initialize the WDCON
TA = OxAA;
TA = 0x55;
EWDI = 1; //Enable the W7100 Reset by Watchdog Timeout
TA = OxAA;
TA = 0x55;
EWT =1; //Disable the Watchdog Timer Reset
while(1);
3

This example shows how to reset W7100 periodically by using Watchdog Timer. Use 6™ and 7*" register
of CKCON register to set the Watchdog Interval, and set Timed Access Register to prepare for
unpredicted situations. Initialize the WDCON register, and set EWT bit from the WDCON register to
enable reset when watchdog timeout occurs. Reset of W7100 can be prevented if the user sets the RWT

bit periodically before watchdog timeout occurs. By applying this, the user can reset W7100 when it

does not work properly.

© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0

36

VOO LZM Ul 48)unos/iswii] asn 0} MO}

ﬁZnet

6 Running Example

This section will explain how to download and run the Timer/Counter example of iMCU7100EVB
Application Note. All example codes are based on KEIL compiler and C code. There are two ways of
downloading the HEX file, which is created by compiling KEIL project, into iMCU7100EVB. One is to use
the WizISP Program, and the other is to use W7100 Debugger. Please refer to ‘iMCU7100EVB User’s
Guide,’ ‘WizISP Program User Guide,’ and ‘W7100 Debugger Guide’ for more details.

In order to run the example codes of ‘iIMCU7100EVB Application Note Timer/Counter’ in the
iMCU7100EVB board, the user must follow the order below.

1. Create KEIL project and Write Timer/Counter example.

2. Compile with KEIL compiler and create HEX file.

3. Download the created HEX file to iMCU7100EVB board by using ISP program or Debugger.
4. Reset the board, run the Timer/Counter example, and check whether LEDO (PO_3) blinks.

Next section is about the results from each step.

6.1 Make a KEIL project

Users can create their own KEIL project, but also can open the attached KEIL project.

Ele Edit Wiew Project Debug Flash Peripherals Tools SwCS Window Help

DG BB D2 E=E 0% %% B ~[#h]# |« = (8|S
S [| WK -la=

| Project Workspace

Select Project File

Look in: | (5 LDOPEACK_TCP | « & ok '

|#) Loopeack

File name: |LODPBACK DOpen |
L‘ Cancel |

Filez of type: !Proiect Files [*.uw2)

<Fig.6.1> Open the KEIL project of Timer/Counter

© Copyright 2011 WiZnet Co., Inc. All rights reserved. ver.1.0
37

VOOLZM Ul 483unos/iawij 8sn 0} MoK

ﬁZnet

6.2 Make a HEX file with compile

Write the code, compile, and create HEX file.

= C:\LOOPBACK_TCP

File Edt ‘iew Favortes Tools Help ri'.(.

@Back - \J |_ﬁ: pSearch [i:_' Falders -

Address [CILOOPBACK_TCP

= =)

File and Folder Tasks

IE‘H Rename this File loopback loopback LOOPBACK LOOPBACK

@ Move this file
.

D) Copy this file
LiOPEACK LOOPEACK LOCPBACK. hex LOOPBACK. Inp

& Publish this file to the Web
() E-mail this file
¥ Delete this fils

»

Other Places

e Local Disk (22

<Fig.6.2> Make HEX file using KEIL compiler

6.3 Download the HEX file to iMCU7100EVB

Download HEX file to iMCU7100EVB board by using ISP program or Debugger. The figure below is the ISP
program. Since the ISP program has to load the BIN file, there is a function that changes a HEX file to

BIN file. Please refer to WIZISP Program Guide for more details.

File: Device Options |lelp

@ Qo2 RAQ B EB20. 500

¢ Load HowxToBin - Edit Sawc | Erase Blank Program Road Merify Auto Mun Hop Exit
COM Pl Curifi Open

MCart: COM1

Lok in: |DLDDPBACILTEF’ v| oxer= o ~
Baud 11520 jE Eliooeeackhe ...,
Flazh Operation MyRecent || e
Docwoents | e e e e
e 7 | || | SIS

Auto Task Seled @ o
Ml RashE] DR 0 e
[#] = Blank U o
= Progran ;_]
4 Veiily MyDocuments | e

F annlical 0 W G |

2 ~

[INERR L] g’ —

My G b
Task: waiting| R RHEDE Hdr.

fter to fla

Completed F ate

EE— ‘Q e name: [LooPeack vl [oeen |
by Memwark -lles ot bype: |a\|| firrmwware filas(™ bin; . haw) fad | Lancel = | &5
Log Meszage i
Tatal Phusical Memon: 255MButes A
Scanning COM port(s)...
[Nound COM paort: COM1
Found COM part: COM2
Total COM part[z): 2 = |
s
ewizISP Lur IMCTT W7lo0 | COM Purl: COMLicluszed) | ﬂ Flash Mude: Nope | @ G/Z20/2209
<Fig.6.3> Download the HEX file to the iMCU7100EVB
[
© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0

38

VOOLZM Ul 483unos/iawij 8sn 0} MoK

ﬁZnet

6.4 Run the Timer/Counter

Once the HEX file is downloaded into iMCU7100EVB board, reset the board and run the Timer/Counter. If
there is no problem with the code, LED1 of the board will blink. If the example codes were used, LED1

will appear to be turned on because of the too fast blinking speed.

CHMCUT 100EM
MEV L. !l]-::l—I}I—:|

IIrltl"

T g

N1 e ooegegn u

<Fig.6.4> Result of the Timer/Counter example code

© Copyright 2011 WiZnet Co., Inc. All rights reserved. ver.1.0
39

VOOLZM Ul 483unos/iawij 8sn 0} MoK

WIZHGI’

Document History Information

Version Date Descriptions

Ver. 0.9Beta 2009 Release with W7100 launching

Ver. 0.91 2010 Modify the watchdog timer register description and code
Ver. 0.92 2010 Modify the timer1 and watchdog timer code

Ver. 1.0 Mar, 2011 Modify for W7100A QFN 64pin package

Copyright Notice

Copyright 2011 WIZnet, Inc. All Rights Reserved.

Technical Support: support@wiznet.co.kr
Sales & Distribution: sales@wiznet.co.kr

For more information, visit our website at http://www.wiznet.co.kr

[
© Copyright 2011 WIZnet Co., Inc. All rights reserved. ver.1.0
40

VOOLZM Ul 483unon/iouil] asn 0} MOK

mailto:support@wiznet.co.kr
mailto:sales@wiznet.co.kr
http://www.wiznet.co.kr/

	1Introduction
	2Timer0/Counter0
	2.1Timer08bit Timer, Software Gated
	2.2Timer08bit Timer, Hardware Gated
	2.3Timer08bit Counter,Software Gated
	2.4Timer08bit Counter, Hardware Gated
	2.5Timer016bit Timer, Software Gated
	2.6Timer016bit Timer, Hardware Gated
	2.7Timer016bit Counter,Software Gated
	2.8Timer016bit Counter, Hardware Gated
	2.9Timer0 8bit Auto Reload Timer, Software Gated
	2.10Timer0 8bit Auto Reload Timer, Hardware Gated
	2.11Timer0 8bit Auto Reload Counter, Software Gated
	2.12Timer0 8bit AutoReload Counter, Hardware Gated
	2.13Timer0 Two 8-bitTimer, Software Gated
	2.14Timer0Two 8-bitTimer, Hardware Gated
	2.15Timer0Two 8-bitCounter, Software Gated
	2.16Timer0Two 8-bitCounter, Hardware Gated

	3Timer1/Counter1
	3.1Timer18bit Timer, Software Gated
	3.2Timer18bit Timer, Hardware Gated
	3.3Timer18bit Counter, Software Gated
	3.4Timer18bit Counter, Hardware Gated
	3.5Timer116bit Timer, Software Gated
	3.6Timer116bit Timer, Hardware Gated
	3.7Timer116bit Counter, Software Gated
	3.8Timer116bit Counter, Hardware Gated
	3.9Timer18bit Auto Reload Timer, Software Gated
	3.10Timer18bit Auto Reload Timer, Hardware Gated
	3.11Timer18bit Auto Reload Counter, Software Gated
	3.12Timer18bit Auto Reload Counter, Hardware Gated

	4Timer2/Counter2
	4.1Timer2 16bitAuto Reload Timer
	4.2Timer2 16bit up/down Auto Reload Counter
	4.3Timer2 16bit Capture Timer
	4.4Timer2 16bit Capture Counter
	4.5Timer2 BaudRate Generator

	5Watchdog Timer
	5.1WatchdogTimer forInterruptApplication
	5.2WatchdogTimer forResetApplication

	6Running Example
	6.1Make aKEILproject
	6.2Make a HEX file with compile
	6.3Download the HEX file to iMCU7100EVB
	6.4Run the Timer/Counter

	Document History Information

