EVB-B1 User’'s Manual

Version 1.0

COPYRIGHT NOTICE

Copyright 2005 WIiZnet, Inc. All Rights Reserved.

Technical Support: support@wiznet.co.kr
Sales & Distribution: sales@wiznet.co.kr
General Information: info@wiznet.co.kr

For more information, visit our website at http://www.wiznet.co.kr

|
ii EVB-B1 User’s Manual V1.0

Table of Contents

I O)Y/ VT 1
I o 10 1 Vo - RS PRS 1
1.2 FRALUIE ...t bbbttt b r e e 2
1.2.1. HIWW FEALUIE........cetittti ettt bbbttt bbbttt 2
1.2.2. FIVV FEALUIE ...ttt bbbttt bbbttt 2

2 Getting Startedcoii e 3
2.1 SyStem CONFIGUIALIONcoviveiieieieieieeee et 3
2.1.1. EVB B/D Layout & CONfIQUuIation............ccceeeurrirnieniniinsssesserese e eesees 3
2.2 PCPrograms INStallcooiiiiiiiicicii s 5
2.2.1. Development Program INSLall...........cooeinne s 5
2.2.2. EVB B/D Test PC Program INStall............cccvenniennenneesse s 5
2.3 QUICK SEAI.....c.ociieiiicicesece ettt be e 6
2.4 EVB B/D TESL ..ottt 8
24.1. MENAGE PrOGIAMviiiiieisss bbbt 8
24.2. EVB B/D TeSt APPIICALONScviieeeriieciericieis s 14
2.5 Troubleshooting GUIEccoveeiiiiceiscess e 19
250, PINQuioioieieieiieeese e 19
252, MISC. coooeveeeeeeeesise s 19

3 Programmer’'s GUIAEc.uoiiiiiiinieiieeceeee e 20
3.1 MEMOIY IMAP ittt 20
3.11. Code & Data MemOrY MAPccurirrrinrine et 20
3.1.2. AVRINemal EEPROM MAPccoooooieiiiieesiisssissssssss s sssssssssssssssesssssssssens 21
3.2 EVB BI/D FIMMWAIEccoeictiicescesecce ettt 27
3.2.1. SOUICES ...tttk b ettt b ke b st e e bbb e R e eE e e b ke bt e bbb e bt et se bbb e s 28
3.2.2. HOW t0 COMPIIE......eeiieie bbb bbb 29
3.23. EVB B/D’S MAIN() c.vvvvvvvrvioressieesisse s sssss s sssssssssss s 30
3.24. MANAGE PIOGIAIM ...ttt s 33
3.25. APPHCALIONS ...ttt bbbttt 50

4 Hardware Designer's GUIdeccccceeeieeeeiieeeeceneeeeeeeenn 97
4.1 BlIOCK DIAQIAM ..ot 98
4.2 BlOCK DESCIIPLION ...ttt 100
A.2.1. PM-AL oottt 100
422, NM70L0B MODULE.........ccomsvirmrriirmnsesinssssinssasssssnnes 104

|
EVB-B1AVR User’'s Manual V1.0 il

4.2.3. LCD .ttt bbb E R E bRt e bbbt et e e 104
42.4. PALL . bbb bbbt e bbbt b e 105
4.2.5. SRAM ... bbb e bbbt b et e bt 105
4.2.6. RS23B2 POttt ettt 105
4.2.7. Expanded Board INtErface ... 105
4.2.8. POWEN REQUIALON ...ttt bbb e 107
4.2.9. 3.3V Power On SYStemM RESELcccoiiecirrrecee et 107
G T 1o 0110 1< £ o 108
4.3.1. MB-EVB XL ettt bttt bbb 108
4.3.2. PIM-AL ettt bbb bbbt 108
4.3.3. NIM7OLOB ...ttt b bbb bbb 108
B4 PAL ..ottt enre e e re et s 109
44.1. EXErNal SRAM AIA ..ottt bbb 109
4.4.2. LCD ATB&L......cceceiieseeieie ettt ettt b bbb 109
4.4.3. W3BL50 AFBB ..ottt 110
A5 PAS LIS.....coiiiececieiee et 112
45.1. MB-EVB-BL PArtS LiSt.......ccccoeiriiiriniiniinisiereeisseeiese e 112
45.2. PIM-AL PAS LISE.....cvvricieisceisretese sttt 112
45.3. NIMT7OL0B ..ottt bbb ettt n s 112
4.6 Physical SPeCIfICALION.........c.ccceiiiiciirece e 113
4.6.1. POWET CONSUMPLION........comiierieiercrerere e 113

|
iv EVB-B1 User’s Manual V1.0

Figures

<FIG 2.1: WEB PAGE OF EVB B/D CONTROLcctitiieiiiterieiesteneeiesre et sreseesesneseesesne et sne et s snesesneneanens 18
<FIG 3.1: EVB B/D MEMORY IMAP> ...ttt ekt sn et sne e ane s ane s 20
<FIG 3.2: AVR INTERNAL EEPROIM MAP>ooiiiiiiii s 21
SFIG 3.3 EVB B/D S MAIN()> ...ttt ettt ettt sttt ettt bt bttt e st sb et e bt bt et et et sbesbeeneere e e ennas 32
SFIG 3.4 CHECK _IMANAGE () .. i ettt ettt sttt sttt ettt bbb e e e et eb e e b e e bt e bt et e b et sbesbesbeereeneeneas 33
SFIG 3.5 MANAGE_CONFIG()> .. ittitestesieetieitete sttt sttt e ettt bt b et b e e e e besb e et e e bt e b e et et et sbenbesaeereeneeneas 34
<FIG 3.6: MANAGE_NETWORK()> ... vt tttitietieitete st st sttt eteeeeste st sbeste st ese e e e besbesbesbesbeebe e e enbesbesbesbesaeeneeneennas 36
SFIG 3.7: MANAGE_CHANNEL()> ..t ttittitietie ittt sttt ettt bttt e et bbb e bt b e et e b et sbesbe bt ere e e ennas 38
SFIG 3.8: PING_REQUEST() .. titete sttt ettt she skttt ettt ettt b e bbb e e et sb e e b e bt e b e et et et sbesbesbeene e e ennas 41
<FIG 3.9: PING_REQUEST() = CONTINUESiitiittitiateitietieieestestesteste st eseeseesbe st sbesbesseesee s ebesbesbesbesseeneeneennas 42
<FIG 3.10: ICMP MESSAGE VS PING IMESSAGE™ccceiiiiiiiti it 43
N T 0 B =1 N]) DSOS USRI 46
<FIG 3.12: DISPLAYPINGSTATISTICS()> ..etteteteitestiatesieeseeseestestestesseaseeseessesbestesbesseesseseessesbessesseasesnseseesseseas 47
SFIG 3.13: SENDPINGREPLY ().t sttt ettt bbbttt bbbt ettt sbenbe bt ene e e eneas 48
SFIG 3.14 1 LOOPBACK_TCPS() S .eitetteiueauieieentestestestesieeseessestestesbesbe s st esee s e besbesbesbe s bt ase e s enbesbesbesbeaneeneeeennas 50
SFIG 3.15: LOOPBACK _TCPC()> ..etiiterteiuiauieieetestesteste it eseeseesteseesbestesseebee e e besbesbeabe s bt ase e e enbesbesbesbeaaeeneeeeneas 53
SFIG 3.16: LOOPBACK _UDP () . .eitiitesteriiatieieete st sttt sttt e e te bt sbe b e st ebe e e et e sbesb e s b e s bt e b e et et e s besbesbesaeereeneennas 54
SFIG 3.17: HTTP IMESSAGE FLOWS ..ottt s s 56
SFIG 3.18: WEB_SERVER()> .. ueiutete sttt etie ettt she sttt et e et e bbbt et e s e b e b e s b e eb e e b e e me e s e e ne e benbeebeabeeneeeenbentas 59
SFIG 319 HTTP _PROC()™ .teeuteteite st steaieetie st e te st sbe sttt e e e e be s bttt s bt b e e st et e nbeeb e e b e e bt e b e et enb e besbenbeebeeneaneennas 60
<FIG 3.20: PARSE_HTTP_REQUEST()> .. eutettetetestestestesieeseeeetestestestesieeseeseesbeseesaesbesbeeseeseenseseesbesbesaeeseaneennas 63
SFIG 3.21: FIND_HTTP_URI_TYPE()> 1t ittetieeeie sttt sttt ettt h sttt ettt s b e bbb e et e st sbesbe b e ne e e eneas 63
<FIG 3.22: GET_HTTP_URI_NAME() & GET_HTTP_PARSE_VALUE()> ...eeiiiiiiiiienie e 64
<FIG 3.23: NETCONF.CGI PROCESSING™......oeitiitiiiiiiieiieieiiesis sttt sre s st 65
<FIG 3.24: LCDNLED.CGI PROCESSINGciiitiiiiiiieiieiiiie sttt 66
<FIG 3.25: DHCP MESSAGE FLOWSc.uiiiiiiiiiiti it e 68
<FIG 3.26: DHCP MESSAGE FORMAT™oiiiiiiiiiitiiiiieiee et e 69
<FIG 3.27: DHCP MESSAGE’S OPTION FIELD FORMATSciiiiiieiiie ittt sie ettt sttt sne e 70
SFIG 3.28: INIT_DHCP_CLIENT()™ 1etttttitietieeeteste st stesieeteeeete st sbesbesseese e e e b e sbesbesbe s bt es e e e enbenbesbesbesaeeneaneennas 72
SFIG 3.29: GETIP_DHOCPS()> ...ttt bttt b ettt et bbb b e neeneas 73
<FIG 3.30: DHCP MESSAGE FLOW BY DHCP CLIENT STATE>......ccciiiiiiiiireie e 75
<FIG 3.31: CHECK _DHECP _STATE()> ...t ttetieieie ittt sttt ettt sttt e bbb s be st be et et et sbesbesbeeneeneennas 76
<FIG 3.32: PARSE_DHCPMSG() & CHECK_DHCP_TIMEOUT()> ...teiieiieieierie st 77
<FIG 3.33: DOMAIN NAME SYSTEM STRUCTURE & DNS MESSAGE FLOW>cccoiviiiniiiiinicniee 79

|
EVB-B1AVR User’'s Manual V1.0 \Y

<FIG 3.34: DNS MESSAGE FORMATScciiiiiiiiiiiitinieic et 80
<FIG 3.35: HEADER SECTION FORMATSoiiiiiiiiitiiisii ettt s 80
<FIG 3.36: QUESTION SECTION FORMAT Sutiiitiiiitieiiiesitessteesteesteessbesstesssbeesstaessbesantaessseesnteesnbeesnsesssns 81
<FIG 3.37: RECODE RESOURCES FORMATSooitiiiiiiiiiiaiieiiiie sttt s 81
<FIG 3.38: GETHOSTBYADDR() & GETHOSTBYNAME()>ctiiiiiieitinieiiieiie ettt 83
SFIG 3.39: DNS_QUERY () .eeeitite ittt sttt sttt bbbttt bt bbb et et e b e bt e b e e bt e bt et e b e b sbesbesbeer e e e ennan 85
<FIG 3.40: DNS_MAKE _QUERY ()™ .. tttttitiatieeeiestesteste st eteeeeste st sbeste s st b e e esbesbesbesbesbeebe e e enbesbesbesbesaeereeneeneas 86
<FIG 3.41: EXAMPLE OF QNAME FIELD TRANSFORMATION OF QUESTION SECTION >ccviviiiiiennirieivennnnns 87
<FIG 3.42: DNS_PARSE_RESPONSE()> .. c.ttettetitestestestesieaseeeesestestestesieesesseesbesbesaesbesseeseaseensestesaesbesseeseeneennas 89
<FIG 3.43: DNS_PARSE_QUESTION() & DNS_PARSE_ANSWER()> ...ccutiuieiieieierieniesieseeeeseesie e snesiesnee e see e 91
SFIG 3441 PARSE _INAME()> ... ieeutete ittt ettt ettt h bttt ettt b e b et h e b b e s b bt e bt e Rt e s b e ee e be s b e ebeebeeneeeenbeeas 93
<FIG 3.45: DNS MESSAGE COMPRESSION SCHEMEScciuiiiiitiirinieiiieiieieisre s sre s sne e 94
<FIG4.1: EVB B/D BLOCK DIAGRAM ..ottt sttt sttt sre sttt sn ettt ne et sn et an e ebesnennane s 99
<FIG 4.2: PM-AL MODULE DIMENSIONccoiiiiiiiiiiiiinie i s 100
Tables
<TABLE 1-1: LIST OF ITEMS CONTAINED IN THE EVB B/D>....coiiiiiiiiiiiiet e 1
<TABLE 1-2 : CONTENTS OF SOFTWARE CD>oiiiiiiiiiiii s 1
<TABLE 2-1 : TERMINAL PROPERTIES SETTINGiitiiuiiiieiireitisreste st sr st sne s 6
<TABLE 2-2 : EVB B/D DEFAULT NETWORK INFORMATIONuiitiitiaiiaieiesiestestesiesiesnesieseesaeseessessesnesneenes 8
<TABLE 2-3 : MENU OF NETWORK CONFIGSccuiiiiiiiiiiiiiiiiie st sr st 9
<TABLE 2-4 : EVB B/D DEFAULT CHANNEL INFORMATIONcuiittiuiatieeeientesteseesseaseeneeneeseesaessessessesseennas 10
<TABLE 2-5 : MENU OF CHANNEL CONFIG™ ..ottt 11
<TABLE 2-6 : IINCHIP™ CHANNEL APPLICATION TYPESoiiiiiiiiiiie ittt sttt ettt sttt ne s 11
< TABLE 2-7 APPLICATION DEFAULT VALUE > ...ttt s 12
<TABLE 3-1: DEVICE MAP DEFINITIONS ..ottt st sre e 21
<TABLE 3-2: AVR INTERNAL EEPROM MAP DEFINITIONScoiiiiiiieiiiiiirene e 22
<TABLE 3-3: SYSTEM INFORMATIONccuiiiiiiitiitiniisiieie ettt sn e 23
<TABLE 3-4: SYSINFO DATATYPE DEFINITIONcciiiiiiiiiiiiriseiieie e 23
<TABLE 3-5: SYSTEM INFORMATION ACCESS FUNCTIONS Scciiiitieiteiieseesieesteesteebesseesteesiessieesnessne e s 23
<TABLE 3-6: NETWORK INFORMATIONS......cuiitiitiirintiiiiesieieisre st sre st sne st sne st 24
<TABLE 3-7: NETCONF DATA TYPE DEFINITIONSccuiiiiiiiriitiiriniesieiee e s 24
<TABLE 3-8: NETWORK INFORMATION ACCESS FUNCTIONS™ccctiieiiiiiriniiinisiesiesee e 24
<TABLE 3-9: CHANNEL INFORMATION ..ottt sre sttt sne e 25
<TABLE 3-10: CHANNEL APPLICATION TYPES.....uiiiitiiieiieiiiie sttt 25
<TABLE 3-11: CHCONF DATA TYPE DEFINITIONSccuiiiiiiiiiiite it 26

|
Vi EVB-B1 User’s Manual V1.0

<TABLE 3-12: CHANNEL INFORMATION ACCESS FUNCTIONScoiiiiiiiiiietsieesie ettt ee s 26
<TABLE 3-13: EVB B/D SOURCES™ccutitiiitiitiiieiiste ettt sttt sre et sre et sb st sne et ane et anenn b snennane s 28
STABLE 3-14: IMAKEFILE ...ttt et et bbb an et 29
<TABLE 3-15 1 IINCHIP™’S DEFINE OPTION >.....iiiiiiiiiiii e 29
<TABLE 3-16: REFERENCE FUNCTIONS IN EVB B/D’S MAIN()>ccutiiiiiiiinie et 31
<TABLE 3-17: CALLER FUNCTION AT MANAGE PROGRAM >cuciiiiiiiiiiiiee sttt ettt ne s 35
<TABLE 3-18: REFERENCE FUNCTIONS IN MANAGE_CONFIG()>ccutiuiatieeiniesieniesieseesieseesie e sresieseees e e 37
<TABLE 3-19: CONSTRAINT BY APPLICATION TYPESS......eiiiiitiittitinieiieaseeseesiestestestesieeseesseseeseesaesiesseeseeseennas 38
< TABLE 3-20: REFERENCE FUNCTIONS IN MANAGE_CHANNEL() > ...uiiiiiiiieiie st 39
<TABLE 3-21: PINGMSG DATA TYPE DEFINITIONScciiiiiiiiiiiirisesieiie e e 44
<TABLE 3-22: PINGLOG DATA TYPE DEFINITIONScciiiiiiiiiitiirisisieiie e 44
<TABLE 3-23: REFERENCE FUNCTIONS IN PING_REQUEST()>veivtrteiuiatieieiestestesieseeseeseesie e sresiesnee e e e 49
<TABLE 3-24: REFERENCE FUNCTIONS IN LOOPBACK _TCPS()>veiueiuiaiiaeeiesiesiesieseeeeseesie s snesiesneeee e e 51
<TABLE 3-25: REFERENCE FUNCTIONS IN LOOPBACK _TCPC()> ... ueiueiueaueeieeieniesiesiesiesieeseenieseeseesiesneeseeseenas 53
<TABLE 3-26: REFERENCE FUNCTIONS IN LOOPBACK _UDP()>utitiiuiaiieiiiesiesiesieseeeeseesie st v snee e e e 55
<TABLE 3-27: WEB BROWSER’S HT TP REQEUST OPERATION PROCEDURE >ccccoiiiiiiriiiiiee i e 56
<TABLE 3-28: HT TP MESSAGE FORMAT™ ..ottt 57
<TABLE 3-29: HTTP MESSAGE BETWEEN EVB B/D AND WEB BROWSER>ccooooiniiniiienenn. 58
<TABLE 3-30: SYSTEM ENVIRONMENT VARIABLES USAGE AT “EVBCTRL.HTML” >....cccoiiiiiiininieieiene 61
<TABLE 3-31: “ST_HTTP_REQUEST” DATASci ittt ittt ee st tee sttt st st e e be e naeennas 62
<TABLE 3-32: REFERENCE FUNCTIONS INWEB_SERVER()>.....cittitirieiiiaiieieenie et siesee e see et sae e e e see e 67
<TABLE 3-33: DHCP MESSAGE DATA TYPES ...ttt s 69
<TABLE 3-34: DHCP MESSAGE OPTION CODE DEFINITION Scciiiiitiiieieeaieesteesieeiessiesiee e seeeseessne e snes 70
<TABLE 3-35: DHCP CLIENT STATE & TIMEOUT DEFINITION >ccciiiiiiiiieit e 74
<TABLE 3-36: DHCP MESSAGE FLAG FIELD SETUP>ccciiiiiiiiiniiiieie e s 75
<TABLE 3-37: REFERENCE FUCNTIONS IN DHCP CLIENT> ...ttt 78
<TABLE 3-38: DNS MESSAGE DATATYPESooiiiiiiiiieieiie e 82
<TABLE 3-39: QUERY TYPE DEFINITION AT DNS_QUERY ()™cittitiriiiiiaiieieenie et iese et sae st nne e 83
<TABLE 3-40: CONSTANTS AND MACRO USED IN HEADER SECTION>ccciiiiiiiiiiieieniire s 87
<TABLE 3-41 : CONSTANTS DEFINTION AT QTYPE & QCLASS FIELD>......cccciviiiiiiiiie e 88
<TABLE 3-42 : CONSTANT DEFINITION AT HEADER SECTION’S RCODE FIELD>.......cccceiiiiiiiiiiicceene 90
<TABLE 4-1: PM-AL MODULE PIN DESCRIPTIONScctiiiiiiieieiiiienit st 101
<TABLE 4-2: LCD PIN DESCRIPTIONSutitiiiiiiiiieiiiire sttt st 104
<TABLE 4-3: EXPANDED BOARD INTERFACE PIN DESCRIPTIONS.......cciiiiriiiiiininieie e 105

EVB-B1AVR User’'s Manual V1.0

vii

1 Overview

EVB-B1 (referred to as “EVB B/D or EVB” from here on) is iinChip™ Evaluation B/D for AVR

developer.

1.1 Package

When purchasing EVB B/D please make sure you have all the flowing contents.

<Table 1-1: List of ltems Contained in the EVB B/D>

ltem Quantity
MB-EVB-X1 EVB Main Board 1
PM-A1 MCU Module (Plugged In MB-EVB-X1)
EVB B/D
NM7010B (Plugged In MB-EVB-X1) 1
Power Adaptor (12V/500mA) 1
AVR ISP Internal Flash Programming Cable 1
Software CD 1
Accessory
UTP Cable 1
Serial Cable 1
<Table 1-2 : Contents of Software CD>
Directory Contents
EVB-B1 | DOCs Manaul User Manual
Datasheet All sorts of Datasheet
Application Note
HW Schemetics All sorts of schematics
Part List All sorts of Part List
PAL PAL Source & JED Files
SW Firmware EVB B/D Firmware
PC Utility All sorts of Tool Program
NM7010B
W3150

® The contents of Software CD could be changed by version. Please check “ReadMe.txt”

of CD.

EVBAVR User’s Manual V1.0

1.2 Feature
1.2.1. H/W Feature

EVB B/D consists of 3 kinds B/D
@® PMAL
- MCU : ATmeagal28, 16MHz
- RAM : 32KB SRAM (External)
- ROM : 128KB Flash (Atmegal28 Internal Flash)
- ICEI/F : JTAG, ISP Support
@ MB-EVB-X1
- Power: 12V, 500mA Adaptor
- UART : Two 232 Serial Port, (default 57600 Baud Rate)
- LCD Display : 16 X 2 Text LCD
- PAL: Address Decoder
@ Network Module (NM7010B)
- iinChip™ : Hardwired TCP/IP Chip W3150
- PHY : RTL8201BL(RealTek), 10/100 BaseT(X) Auto Negoation
- MagJack : P65-P01-11A9 (Speedtech) , Integrated Transformer(1:1)
Link & ACT LEDs
1.2.2. F/W Feature

The F/W Feature of EVB B/D is made up of two parts.

@ Manager mode
- Network Config : MAC, Source IP, G/W IP, S/N, DNS IP Setup
- Channel Config : iinChip™ Test Application Setup for each Channel
- Ping Test : Ping Request Test with DNS

@ Application mode
- Loopback TCP Server : TCP Server Mode Test Application
- Loopback TCP Client : TCP Client Mode Test Application
- Loopback UDP : UDP Test Application
- Web Server : Web Server Test Application
- DHCP Client : Dynamic Network Config using DHCP Server

|
2 EVB-B1 User’s Manual

2 Getting Started

2.1 System Configuration
2.1.1. EVB B/D Layout & Configuration

For testing the functions of the EVB B/D and for application development, the EVB B/D should
be configured as shown below. First, the EVB B/D is connected to the PC using the crossed
UTP Cable (for data transmission) and the Serial Cable (for monitoring). Second, the dip switch

and jumper should be set as below;

PL

PLUB

_
.
LR LRI RLE D) =
.ﬁ
L]

LA RNl R ™
TevReherdel-

TR H

Ol
2 2 3 =

| L 3 K 3 |
-4

=
&

B

—
o'
CL2W]
.

'
MB—EwHBH—-X1 RE1l.D
FMER] g i ~— POOS-0Z-0Z .
RLIR1E [AEJET]

<Fig 2.1 : EVB-B1 Jumper Setting>

@ Active CPU Reset Select : JP5
Make CPU_RESET and /RESET go short using Header Shunt as shown in the picture.
When pressing the SW3(RESET SWITCH), Active Low Signal is supplied to PM-Al

|
EVB-B1 User’s Manual 3

@ RESET

e CPU_RESET

(3) /RESET

<Fig 2.2 : JP5 Jumper Setting>

@ Default setting for EVB-B1
-. SW1 : This setting is not affect the W3150 operation.
-. JP8 ~ JP14 : Must be short with header shunt pin 2,3 as shown in the picture.

9]0 0

<Fig 2.3 : Setting JP8 ~ JP14 >

(® Power Consumption Checking Point : JP15, JP16, JP17
To measure Power Consumption of EVB B/D, there are Checking Point for each power
supply. The soldered part should be removed and measurement is performed by Current

Meter.

|
4 EVB-B1 User’s Manual

2.2 PC Programs Install

2.2.1. Development Program Install

2.2.1.1 Compile Tool Chain
For installation and usage of WinAVR, refer to the related manual.
F/W of EVB B/D is currently using AVR GCC Version 3.4.3 Compiler and can be changed with

compiler version upgrade.

22.1.2 ICE Programs

EVB B/D supports JTAG & ISP ICE for development and Debugging. For ISP Program,
“AVRStudio” program is used. Please refer to the related manual for installation and usage of
“AVR Studio”.

2.2.1.3 ROM File Maker Program

ROM File Maker Program is a utility program that provides convenience in using simple ‘ROM
File System’ for EVB B/D. The reason that ROM File Maker Program is used in EVB B/D is to
access Web Pages for Web Server Test Application as ‘ROM File System’. Refer to “ROM File

Maker Manual Vx.x.pdf” for further instruction on installation and ROM File Maker Program

2.2.2. EVB B/D Test PC Program Install

2.2.2.1 Loopback Test Program (AX1) Install

Loopback Test Program (referred to as “AX1” from here on) is a program to evaluate the
performance of iinChip™ and does the Loopback on file and packet data in connection with
EVB B/D channel applications such as Loopback TCP Server/Client and Loopback UDP. Please

refer to “AX1 Manual Vx.x.pdf” for installation and usage.

EVB-B1 User’s Manual 5

2.3 Quick Start

After the confirming the Package of EVB B/D, test EVB B/D in the order shown below.

(D Confirm the testing environment. Refer to Chapter 2.1
Connect test PC to EVB B/D using UTP cross cable directly.
Connect test PC to EVB B/D using serial cable directly.
Connect 12V power adaptor to EVB B/D

@ Confirm the network information of Test PC as the following
Source IP Address : 192.168.0.3
Gatway IP Address : 192.168.0.1
Subnet Mask : 255.255.255.0

@ Execute on DOS prompt

@ Execute Ping test with EVB B/D

C:Wrping 192.168.8.2

Pinging 192.168.8.2 with 32 hytes of data:
Reply from 192._.168.0. bytez=32 time<{l8mns=
Reply from 192._.168.0. bytez=32 time<{l8mns=

Reply from 192._.168.0. bytez=32 time<{l8mns=
Reply from 192._.168.0. bytez=32 time=18mnsz

Ping statistics for 192.168_.8_.2:
Packetz: Sent = 4, Received = 4, Lozt = 8 (@x loss>.
Approximate round trip times in milli—seconds:

Minimum = Bmsz,. Maximum = 18ms=, Average = Zms

<Fig 2.4 : EVB B/D Ping Reply Test>

® Install AX1 on Test PC. Refer to Chapter 2.2.2.1

® After the execution of terminal program, set up the properties as the following.

<Table 2-1 : Terminal Properties Setting>

Properties Setting Value
Bits Per second(Baud Rate) 57600 bps
Data Bits 8 Bits

Stop Bits 1 Bit

Parity No

Flow Control None

After the completion of terminal setup, connect EVB B/D and wait.

|
6 EVB-B1 User’s Manual

@ Turn on the power switch(SW2) of EVB B/D
Following items should be checked upon power on

- Check lighting on power LED(D3) of EVB B/D when powering on

- Check repeating turning on LEDs(D1,D2) of EVB B/D three times and check if the
toggling works ok one by one.

- Check if Text LCD display of EVB B/D outputs in the way shown in <Fig 2.5> and

shown in <Fig 2.6> on the Terminal Program

< MANAGE MODE = | After about7 SeCOﬂdS» <EVB-Al VER X.X>

TIT1T] 192.168.000.002

<Fig 2.5 : EVB B/D Text LCD Display>

[#IMini Term

File () Configure {C) Transfer (T} Help (H)

=
ta Lx

FPress 'M' to enter the manadger mode.............0..

e e R L R s R b RS sk b s R s E R ks R]
EVE-41 with iinChip - Test in Direct Mode

[Mini Term ERARESSREARRES S GERRENRRSOBRRRARESERENRRES
File (E} Configure {C) Transfer (T} Help (H) Copyright : WIZnet, Inc. 2005 ~ 2006
g @l Homepage ¢ http://wvv.wiznet.co.kr
=1 =" .
T LY @ After about 7 seconds guppart i supportBviznes.co.kr
ales H sales@vuznet,.co.kr
Press 'M' to enter the manager mode..... - ;;;]_;;;;;;;_____;_5_;_1 ____________________
H/W Version : NEW EVE REV 1.0
Gource IF o 192.1688.0.2
Gateway IP 1 192.168.0.1
Subnet Mask r 255.255.255.0

DNE Server IP : 0.0.0.0
MALC Addr : 0x00.0x08.0xDC.0x00.0x00.0x35
LEREREEEEE EREEE RS s R S s R R i]

0 : Loop-Back TCP Server Started.
1 : Loop-Back TCP Server Started.
2 : Loop-Back TCP 3erver Started.
3 : Loop-Back TCP Server Started.

<Fig 2.6 : Output of Terminal Program>

Execute “AX1” program. Refer to “AX1 Manaul Vx.x.pdf”

@ Test the operation of “AX1"” program with TCP Client. Refer to “AX1 Manaul Vx.x.pdf”
After setting the Server IP Address as “192.168.0.2” and port Number as “5000” by clicking
[TCP>>Connect] Menu then click, [TCP>>Send] Menu or [Ts],[Tr],[] Icon.

@ Loopback any file or packet between “AX1” Program and EVB B/D.

|
EVB-B1 User’s Manual 7

2.4 EVB B/D Test

The firmare of EVB B/D can be divided into Manage Program and EVB B/D Test Application.
Manage Program performs system configuration to run EVB B/D and EVB B/D Test Application
is Network Application Program for iinChip™ Test.

2.4.1. Manage Program

Manage Program is a program that is executed upon receiving character ‘M’ or ‘m’ from the
terminal program within 7 seconds when doing the manual reset of EVB B/D and EVB B/D
power On. This program sets up the Channel Application of iinChip™ to be tested. and performs

certain Ping Request Test with DNS Server.

[# Trdini Term

File (F3 Configure (C) Transfer (T} Help (H}

LY

t L X
to enter the manager mode..

Press 'M

1l : HNetwork Config
Z2 : Channel Config
3 : Ping App Test
F Factory Reset
E Exit

<Fig 2.7 :Manage Program Execution >

24.1.1 Network Configuration
It selects Network Information that is used in EVB B/D. When choosing ‘1’ at terminal Program
of <Fig 2.7> Network Information of EVB B/D can be set as desired. The default Network

Information of EVB B/D is shown in <Table 2-3>.

<Table 2-2 : EVB B/D Default Network Information>

Network Information Default Value
MAC Address 00.08.DC.00.00.00
Source IP Address 192.168.0.2
Gateway IP Address 192.168.0.1
Subnet Mask 255.255.255.0
DNS Server IP Address | 0.0.0.0

|
8 EVB-B1 User’s Manual

If “Network Config” menu is selected on Manage Program, menu shown in <Fig 2.8> can be

displayed and each function is described in <Table 2-4>.

Zelect 2 1

u} Display Config
1 Source IF

2 Gateway IP

3 : Subnet Mask

1 DNE SFerwver IF
F Factory FEFeset
E Exit

<Fig 2.8 : Network Config>

<Table 2-3 : Menu of Network Config>

Menu Description

0 : Display Config Outputs current Network Information

1: Source IP Address Sets up Source IP Address

2 : Gateway IP Address Sets up Gateway IP Address

3 : Subnet Mask Sets up Subnet Mask

4 : DNS Server IP Sets up DNS Server IP Address
<Warning> DNS Server is information needed for “Ping Request”
Test and transformation of Domain Name into IP address and so it
must be set up as Static IP Address.

F : Factory Reset Initialization of the system with the default value.
Refer to <Table 2-2>

‘M’ or ‘m’ Sets up MAC Address. Hidden Menu.
<Warning> This value is not change when Factory Reset.

E : Exit Exit “Net Config”

EVB-B1 User’s Manual 9

<Fig 2.9> is an example of setting the Source IP of EVB B/D in Network Config

[u] Display Config

1 Jource IF

Z : Gateway IF

3 : ZJubnet Mask

4 : D3 Server IP

I Factory Reset

E Exit

Gelect 701

Source IP ? 192.1685.0.100_

<Fig 2.9 : Source IP Address Setup Example>

2.4.1.2 Channel Config

It set up Test Application that can be operated in iinChip™ 4 channel of EVB B/D. If 2’ is
selected, each channel can be set up. The default iinChip™ Channel Information is shown in
<Table 2-5>.

<Table 2-4 : EVB B/D Default Channel Information>

iinChip™ Channel | Test Application
1* Loopback TCP Server (Port 5000)
2 Loopback TCP Server (Port 5000)
3" Loopback TCP Server (Port 5000)
4" Loopback TCP Server (Port 5000)

If “Channel Config” menu is selected in manage program, <Fig 2.10> is displayed and the
functionality of each menu is same as <Table 2-6>.

Select ? 2

[u] Display Config
1 1=t Channel

2 1 Znd Channel

3 ¢ 3rd Channel

4 : 4th Channel

F Factory EReset
E Exit

<Fig 2.10 : Menu of Channel Config>

10 EVB-B1 User’s Manual

<Table 2-5 : Menu of Channel Config>

Menu

Description

0 : Display Config

Output of current Setted up Test Applicatioin Type by each iinChip™

Channel

1: 1% Channel Test Application Type Setup at iinChip™ No. “0” Channel
<Warning> As developing EVB B/D, DHCP Client Application Setup is
possible at only No. “0” Channel.

2 : 2" Channel Test Application Type Setup at iinChip™ No. “1” Channel

3:3"“ Channel Test Application Type Setup at iinChip™ No. “2” Channel

4 : 4" Channel Test Application Type Setup at iinChip™ No. “3” Channel

F : Factory Reset Initialization into original Setup status. Refer to <Table 2-4>

E : Exit Exit “Channel Config”

Available Setup Test Applicatioin by each iinChip™ Channel is shown as <Tabel 2-7>

<Table 2-6 : iinChip™ Channel Application Type>

Application Type Description
No Use Not used
DHCP Client Receiving Network Information of EVB B/D from DHCP Server

dynamically
<Warning> If DHCP Server is not existing in LAN it sets back to

default value after certain amount of time

TCP Loopback Server

TCP Server Test Program
<Warning> EVB B/D : TCP Server, AX1 : TCP Client

TCP Loopback Client

TCP Client Test Program
<Warning> EVB B/D : TCP Client, AX1 : TCP Server

Loopback UDP

UDP Test Program

Web Server

Web Server Test Program

Other application types except for “DHCP Client” can be repeatedly set up regardless of

channel.

<Fig 2.11> shows an example of setting the 2" Channel of iinChip™ as “TCP Loopback Cleint”

When inputting simply [ENTER] without IP address or port number, the default value is applied.

<Table 2-8> shows default values required for each application.

EVB-B1 User’s Manual

11

Jelect 2 2
Jelect the followed ALPPs twype for 1 channel.
0O : No Use
: Loop-EBack TCP 3Zerwver
Loop-EBack TCP Client
Loop-EBack UDP
Weh Server

[y QY R Y

Jelect 27 3
Jerver IFP Address 7

Default Applied. 192.165.0.3
Jerver Port Num (1~65535) 72
Default Applied. 3000

<Fig 2.11 : Loopback TCP Client Application Setting Example>

< Table 2-7 Application Default Value >

Application Type Default Value
DHCP Client None
TCP Loopback Server Listen Port Number : 5000
TCP Loopback Client Server IP Address : 192.168.0.3
Server Port Number : 3000
Loopback UDP Source Port Number : 3000
Web Server HTTP Port Number : 80

12 EVB-B1 User’s Manual

2.4.1.3 Ping Application Test

Ping Application Test is a program created for IP RAW Channel Evaluation of iinChip™ and
sends Ping request to certain peer and receives Ping Reply. This program is set up identically
with the ping command in the DOS prompt. It's executed when ‘3’ is chosen in :Manage

Program Execution >

[“IMini Term =101x]
File (E» Configure {C) Transfer {T} Help {H}

=B, =B, @

taa L

2 : Channel Config
3 : Ping App Test
F : Factory Reset
E : Exit

Select 3

Fing Regeust program started...

Usage : ping [-t] [-a] [-n count] [-1 size] [-w timeout] destination-list
Option
-t Ping the specified host until stopped.
To see statistics and continue - type Control-Break:
To =top - type Control-C.
-a Resolve addresses to hostnames
-n count Numwbher of echo reguests to send.
-1 =size Send buffer size.
-Ww timeout Timeout in milliseconds to wait for each reply.
FING:>
Connected 57600, 8-Mone-1, Mone | Capture : OFF | @RX@ T

<Fig 2.12 : Usage of Ping Applicaton >

<Fig 2.12> displays the execution screen of Ping Application and shows how to use the Ping

Application.

EVB-B1 User’s Manual 13

<Fig 2.13> shows the real example of sending the Ping Request to the destination and

receiving the Ping Reply.

I tini Term ==
File (E} Configure {C) Transfer (I) Help (H)

g, =B,
T LX
-n count Number of echo reguests to send.
-1 size SJend buffer size.
-w timeout Timeout in milliseconds to wait for each reply.

PING> ping www.yahoo.co.kr
DN3 SERVER:164.124.101.2

Ping Reguest to 202.43.214.151[www.vahoo.co.kr]
Pinging 202.43.214.151 with 32 bytes of data :
Feply from 202.43.214.151 : bytes=32, time<=2Zms
Feply from 202.43.214.151 : bytes=32, time<=2Zms
Feply from 202.43.214.151 : bytes=32, time<=2Zms
Feply from 202.43.214.151 : bytes=32, time<=2Zms
Ping statistics :

Packets: Sent = 4, Receiwved = 4, Lost = 0
Ping Reply Packets = 4

FING>

Connected 57600, &-Maone-1, Mone | Capture : OFF | @rx@ 1

<Fig 2.13 : Ping Application Test>

To terminate the Ping Application type, “exit” in “PING>" prompt.

2.4.2. EVB B/D Test Applicatons

2.4.2.1 DHCP Client
DHCP Client Application is an application that dynamically assigns network information for EVB
B/D from DHCP Server. To test DHCP Client, first of all, inChip™ 1* channel application type

must set up as “DHCP Client” using [Manager>>Channel Config>>1% Channel] Menu.

Refer to Chapter 2.4.1.2

<Fig 2.14> is the screen that DHCP Client successfully obtains network information. Note that
DHCP Client will be set with default network information if DHCP Server does not exist or is not

able to obtain network information from DHCP Server.

14 EVB-B1 User’s Manual

I hini Term -|ol =|

File (E) Configure (C} Transfer (I} Help (H}

8, =H,
ta LY

Y

0 : DHCH Client Start. .
Get network information from DHCP Server... € DHGP Client Start Log

HARHHBHEGERAAAAHHHR R ERRAR AR R
EVE-A1 with iinChip - Test in Direct Hode
EEREEEEEEFEEREEEEEER R EEEE LR R E

Copyright @ WIZnet, Inc. 2005 ~ ZOOG
Homepage : http://wuw.wiznet.co.kr
Support : supportlwiznet.co.kr
Sales : galesfwiznet.co.kr

F/W Version o 1.0.1.2

H/W Version i NEW EVE REV 1.0
Source IP 210.281.197.33
Gateway IF J2g10.2281.197.1

Subnet Mask :|z55.255.255.192 |€ Network Information received from DHCP Server

DNS Server IP :|164.124.101.2
MAC Addr : Ox00.0x08.0xDC.0x00.0x00.0x35
HEE AR RRAR RN RBRRHRRAA RS

1 : Loop-Back TCP Serwver Started.
2 : Loop-Back TCP Serwver Started.
5 : Loop-Back TCP 3Serwver 3Started.

Connected 57600, A-Mone-1. Mone ‘ Capture : OFF | @rRX@1x

<Fig 2.14 : DHCP Client Test>

2.4.2.2 Loopback TCP Server

Loopback TCP Server Application is an application that loops back any file or packet data
through TCP Channel connected with “AX1” Program of Test PC. First of all, set any channel as
“Loopback TCP Server” Application Type using [Manager>>Channel Config] menu of EVB B/D
to test Loopback TCP Server.

When setting up “Loopback TCP Server” Application Type of EVB B/D, you can set listen port
Value to any value. Here, it's set as the default value, 5000. Refer to Chapter 2.4.1.2

After the setup of EVB B/D is complete, run “AX1” at Test PC then try the connection to the IP
Address. When the connection between EVB B/D and “AX1” is successful, loop back the data.
Refer to “AX1 Manaul Vx.x.pdf”

Source IP : 192 .165.0.2
Gateway IP : 192 .1658.0.1
Subnet Mask : 255.255.255.0

DS Serwver IP @ 0.0.0.0
MAC Addr : Ox00.0x05.0xDC.0x00.0x00.0x35
EEEEEEEEFEEEENEEEEEEEEE SRR -2 4

Loop-Back TCP Serwver Started,.
Loop—-Eack TCP Serwver 3S3tarted.
Loop-Back TCP Serwver Started.
Locop—EBack TCP Server Started.
Connected by 192.168.0.30[2313]'

[l X =]

Peer Connection Information in 0 channel of iinChip™

<Fig 2.15 : Loopback TCP Server Test>

|
EVB-B1 User’s Manual 15

2.4.2.3 Loopback TCP Client

Loopback TCP Client Application is an application that loop backs any file and packet data
through TCP channel connected with “AX1” Program of Test PC

After running the “AX1" on the server, set any channel of iinChip™ as “Loopback TCP Client”
Application type using [Manager>>Channel Config] menu of EVB B/D.

When setting up the “Loopback TCP Client” Application type of EVB B/D, set the Server IP as
the IP Address of the Test PC and set Server Port as the waiting Server Port Number(3000).
Refer to Chapter 2.4.1.2.

After setting up EVB B/D is complete, exit from the manager program and run EVB Test
Application. If EVB B/D is connected to “AX1” successfully, loop back the desired data. Refer to
“AX1 Manaul Vx.x.pdf”

S“ource IF o 192.165.0.2
cateway IP o 192.165.0.1
S“ubnet Mask i 255.255.255.0

LMNS Server IP @ 0.,0.0.0
MAC Addr : O0=x00.0x08.0xDC.0x00.0x00.0x35
g g g g e bR R R R gy

Loop—Back TCP Serwver Started.
Loop-EBack TCP Client Started. |
Loop-Fack TCF Serwer aotarted.
Loop—Bsck TCP Server Started.

Connected by 192.168.0.30(2527) | € Peer Connection Information
in 1 channel of iinChip™

[ST [FRNS =Y (]

<Fig 2.16 : Loopback TCP Client>

2.4.2.4 Loopback UDP

Loopback UDP Application is an application that loops back any File and Packet Data through
UDP Channel connected with “AX1” Program of Test PC. First of all, to test Loopback UDP, set
up any Channel of iinChip™ as “Loopback UDP” Application Type using [Manager>>Channel
Config] Menu of EVB B/D.

In setting up “Loopback UDP” Application type, set Source Port as any value. Here, it's set with
3000. Refer to Chapter 2.4.1.2

After EVB B/D setup is over, loop back desired data with IP Address and UDP Source Port of
EVB B/D using menu or Icon related to UDP.

Refer to “AX1 Manaul Vx.x.pdf”".

|
16 EVB-B1 User’s Manual

Source IP : 19z.168.0.2
Gateway IP : 192 .1e5.0.1
“ubnet Mask : 255.255.255.0

DN3 Serwver IP @ 0.0.0.0
MAC Addr : Ox00.0x05.0xDC.0x00.0x00.0x35
EEEEEEEEREE R o 35 -

Loop-EBack TCP Serwver Started.

o o=
1 : Loop-—Fack TCP Clisnt Started.
rz : Loop-Back UDP Started. I(- Loopback UDP Application Log

3 : Loop-bBack TCFP Serwver Ztarted.

<Fig 2.17 : Loopback UDP Test>

2.4.25 Web Server

Web Server Application sends and receives web pages and EVB B/D control data etc. through
HTTP Channel connected with web browser. For Web Server testing, set up any channel of
iNnChip™ as “Web Server” Application Type using [Manager>>Channel Config] Menu of EVB
B/D.

When setting up “Web Server” Application Type of EVB B/D, set HTTP port as any value. Here,
it's set to 80, the default value. Refer to Chapter 2.4.1.2.

After setup for EVB B/D, run Web browser in the Test PC, type the URL(http://192.168.0.2/) of
the EVB B/D in the address field and connect to EVB B/D.

Source IP v 192 .1e2.0.2
Cateway IP v 192 .1e8.0.1
Subnet Mask r 255,285 .255.0

DMNS Serwver IP @ 0.0.0.0
MAC Addr : Ox00.0x08.0=xDC.0x00.0x00.1
HHUHEH SRR

Loop-EBack TCP 3S3erver Started.
Loop-EBack TCP Client Started.
Loop-Fack TDP Started.

Web Server 3tarted. Web Server Application Log and
Connected by 192.168.0.30(2313) Peer Connection Information

l'_A.'ll'_A.'lll\.'ll—l-D

<Fig 2.18 : Web Server Test>

If the web browser successfully connected to HTTP port of EVB B/D, the Web Page of <Fig
2.19> can be viewed. In case Web Page of <Fig 2.19> is not shown, refresh the screen using

the “Refresh” function of the web browser.

|
EVB-B1 User’s Manual 17

(WiZnet

SiliconIProven TCPAP Teqlhnology

gl

Caontrol

mponent- modules

<Fig 2.19 : Default Web Page of EVB B/D>

If [Control] button on the Web Page in <Fig 2.19> is clicked, it can set the network information or

show the web page that can turn on/off LEDs(D1,D2) and display rows of text on Text LCD

display.

(Wiznet

Source P |192.1EE|.EIDD.EIEIZ

Gateway IP |1 92 163,000,001

Subnet Mask |255.255.255.EIEIEI

OMS Server IP |IZIIZIIZI. 000,000, 000
MaC Sddress 00,08 DC, 00,00, 35

Metwork Config

192, 168,000,002

~ LEDD ¢
W LED1 i

LCD & LED Config

<Fig 2.1: Web Page of EVB B/D Control>

18 EVB-B1 User’s Manual

2.5 Troubleshooting Guide
2.5.1. Ping

When you can not reach EVB B/D by Ping command,

Step 1. Did you connect correctly between test PC and EVB B/D with UTP cable?
Step 2. Did you change your test PC's network environment (IP address, Gateway,

Subnet)? If no, you should change it first as follows:
IP address: 192.168.0.3

Gateway address: 192.168.0.1
Subnet Mask: 255.255.255.0
Step 3. Whether NM7010B's Link LED(left LED from rear view) is on?

If off, you'd better check whether the UTP cable works correctly.

2.5.2. Misc.

When the serial terminal screen remains blank with the power on after a connection is
made

Step 1. Check the connection condition of the serial cable.

Step 2. Check if the COM Port numbers of the PC and terminal coincide.
Step 3. Check the terminal’s baud rate 57600.

|
EVB-B1 User’s Manual 19

3 Programmer’s Guide

3.1 Memory Map
3.1.1. Code & Data Memory Map

Memory Map of EVB B/D has Code Memory 128 Kbytes, Data Memory 64Kbytes. Data Memory
is divided into SRAM Area, W3150 Area, and Text LCD Area. Other than these, there is 4Kbytes

AVR Internal EEPROM. Various kinds of environmental variables are recorded on this EEPROM.

<Fig 3.1>, <Table 3-1> are representations of System Memory Map of EVB B/D.

Ox1FFFF OXFFFF
W3150
TX,RX Buffer
16KB
0xEO000
Not Used
gzzggg TEXT LCD
Not Used
CODE
0x8800 W3150
AVR Internal Flash 0x8000 SRR,
128KB
External
SRAM
0x1100
AVR Internal SRAM
AVR Internal 0x0100
EEPROM 4KB AVR Regs.

<Fig 3.1: EVB B/D Memory Map>

20 EVB-B1 User’s Manual

<Table 3-1: Device MAP Definition>

Device Map Define Source Code
W3150 #define IINCHIP_ BASE 0x8000 iiNnChip/W3150.h
#define IINCHIP_DIRECT_REG_BASE 0x8000
Text LCD | #define LCD_BASEADDR 0x9000 evb/lcd.h

3.1.2. AVR Internal EEPROM MAP

<Fig 3.2>, <Table 3.2> are representations of AVR Internal EEPROMZ2| Map.

Refer to “evb/config.h” and “evb/config.c.”

addr 0 1 2 3 4 5 & 7 B § 4 B C D E F
8YS_ ava_
System
0200 | S¥YS_TEST SYS_VER AUTD ANY Information
RESET | PORT
0220 | NET_TEST NET_MAC NET_SIP NET_GWIP Network
0z30 NET_SN NET_DNS Information
CH_ CH_ CH_ CH_
0250 | CH_TEST CH_DEST_IFO CH.DEST_IP1
TYPE_(| PORT_O TYPE_1 | PORT_1 Channel
CH_ CH_ CH_ CH_ Information
0z60 CH.DEST_IP? CH.DEST_IP3
TYPE_2 | PORT.2 TYPE_3 | PORT_3

<Fig 3.2: AVR Internal EEPROM Map>

EVB-B1 User’s Manual 21

<Table 3-2: AVR Internal EEPROM MAP Definition>

#define SYS_INFO 0x00
#define SYS_TEST (SYS_INFO)
System .
#define SYS_VER (SYS_TEST +2)
Information .
#define SYS_AUTORESET (SYS_VER +4)
#define SYS_ANY_PORT (SYS_AUTORESET + 1)
#define NET_CONF 0x20
#define NET_TEST (NET_CONF)
#define NET_MAC (NET_TEST+2)
Newwork]
#define NET_SIP (NET_MAC + 6)
Information]
#define NET_GWIP (NET_SIP + 4)
#define NET_SN (NET_GWIP + 4)
#define NET_DNS (NET_SN + 4)
#define CH_CONF 0x50
#define CH_TEST (CH_CONF)
#define CH_TYPE_O (CH_TEST + 2)
#define CH_PORT_0O (CH_TYPE + 1)
#define CH_DESTIP_O (CH_PORT_0 + 2)
#define CH_TYPE_1 (CH_DESTIP_O + 4)
Channel #define CH_PORT_1 (CH_TYPE_1+1)
Information | #define CH_DESTIP_1 (CH_PORT_1 +2)
#define CH_TYPE_2 (CH_DESTIP_1 + 4)
#define CH_PORT_2 (CH_TYPE_2 +1)
#define CH_DESTIP_2 (CH_PORT_2 +2)
#define CH_TYPE_3 (CH_DESTIP_2 + 4)
#define CH_PORT_3 (CH_TYPE_3 +2)
#define CH_DESTIP_3 (CH_PORT_3 +2)

22 EVB-B1 User’s Manual

3.1.2.1 System Information
System Information area is used in recording System Information such as Firmware Version of
EVB B/D.

<Table 3-3: System Information>

Name Description Default Value
SYS TEST System Information’s Valid Check 0xA5A5 — Valid
Others — Invalid
SYS_VER F/W Version 0x01000001 (1.0.0.1)
Little Endian

SYS_AUTORESET | If you set any environmental variable | Ox01 — System Auto Reset
up, Auto Reset Check Othres — No Reset
SYS_ANY_PORT Using Any Port Number at Socket | 1000 ~ 65535

creation Little Endian

System Information is accessed as SYSINFO Data Type.

<Table 3-4: SYSINFO Data Type Definition>

Type Definition Instance
typedef struct _SYSINFO SYSINFO SyslnfO'
{ 1
u_int test;
u_long ver;
u_char auto_reset;
u_int any_port;
}SYSINFO;
<Table 3-5: System Information Access Functions>
Function Description
void set_sysinfo(SYSINFO* pSysinfo) Save the System Information
void get_sysinfo(SYSINFO* pSysinfo) Get the System Information

EVB-B1 User’s Manual 23

3.1.2.2 Network Information
Network Information is used in recording Network Configuration information to be used for EVB
B/D.
<Table 3-6: Network Information>
Name Description Default Value
NET_TEST | Network Information Valid Check | OXA5A5 — Valid
Others — Invalid
NET_SIP Source IP Address 0xCO0 A80002 (192.168.0.2)
NET_GWIP | Gateway IP Address 0xCO0 A80002 (192.168.0.1)
NET_SN Subnet Mask OXFFFFFFOO (255.255.255.0)
NET_DNS DNS Server IP Address 0x00000000 (0.0.0.0)

Network Information is accessed as NETCONF Data Type.

<Table 3-7: NETCONF Data Type Definition>

Type Definition

Global Instance

typedef struct _NETCONF

{
u_int test;
u_char mac[6];
u_long sip;
u_long gwip;
u_long sn;
u_long dns;

INETCONF;

NETCONF NetConf;

<Table 3-8: Network Information Access Functions>

Function

Description

void set_netconf(NETCONF* pNetConf)

Save the Network Information

void get_netconf(NETCONF* pNetConf)

Get the Network Information

3.1.2.3

Channel Information

Following table introduces about the 4 Channel Application of iinChip™.

24

EVB-B1 User’s Manual

<Table 3-9: Channel Information>

Name Description Default Value
CH_TEST Channel Information] 0xA5A5 — Valid
Valid Check Others — Invalid
CH_TYPE_X No. “X” Channel’'s Application | Default - LB_TCPS
Type NOTUSE : Not Used

DHCP_CLIENT : DHCP Client
LB_TCPS : Loopback TCP Server
LB_TCPC : Loopback TCP Client
LB_UDP : Loopback UDP
WEB_SEVER : Web Server

CH_PORT_X No. “X” Channel’s Little Endian
Source/Destination LB_TCPS : Source Port, 0x5000
Port Numer LB_TCPC : Destination Port, 0x3000

LB_UDP : Source Port, 0x3000
WEB_SERVER : 80
CH_DESTIP_X No. “X” Channel’s Destination | OxCO A80003 (192.168.0.3)

IP Address

Channel Information is used for recording 4 Channel Application Types of iinChip™.
Channel Application Type includes Loopback TCP Server, Loopback TCP Client, Loopback
UDP,DHCP Client, Web Server, and Channel Information is defined as APPTYPE enumeration

type.

<Table 3-10: Channel Application Type>

typedef enum _APPTYPE

{
NOTUSE,
DHCP_CLIENT,
LB _TCPS,
LB_TCPC,
LB_UDP,
WEB_SERVER

JAPPTYPE;

Channel Information is accessed as CHCONF Data Type.

EVB-B1 User’s Manual 25

<Table 3-11: CHCONF Data Type Definition>

Type Definition Global Instance
typedef struct _CHCONF CHCONEFE ChConf:
{ L
u_int test;
struct _CH_CONF
{
u_char type;
u_int port;
u_long destip;
Jch[4];
}CHCONF;
<Table 3-12: Channel Information Access Function>
Function Description
void set_chconf(CHCONF* pChConf) Save the Channel Information
void get_chconf(CHCONF* pChConf) Get the Channel Information

26 EVB-B1 User’s Manual

3.2 EVB B/D Firmware

EVB B/D Firmware -EVB main()- can be divided into two parts. First, Manage Program that sets
up various environment for running EVB B/D. And second, Loopback Programs that tests
iinChip™ performance and there are Internet Application using Internet Protocols such as
DHCP, HTTP, DNS, and ICMP.

Let’s look at the sources list of which EVB B/D is composed and then look at each application

source.

|
EVB-B1 User’s Manual 27

3.2.1. Sources

<Table 3-13: EVB B/D Sources>

Classification

(Directory) Files Description
app ping_app.h, ping_app.c Ping Request App implementation
loopback.h, loopback.c TCP, UDP Loopback Apps implementation
webserver.h, webserver.c Webserver App implementation
mcu irg.h avr_irg.c AVR Interrupt Request resistration
delay.h, delay.c Delay Function — wait_xxx()
i2c.h, i2c.c AVR 12C I/F control
serial.h, serial.c AVR UART control
timer.h, timer.c AVR Timer enable & diable
types.h AVR Data Type Definition
evb channel.h, channel.c Channel App Handler resistration & cancellation
config.h, config.c EVB B/D Environment
evb.h, evb.c EVB B/D initialization
Icd.h, Icd.c EVB B/D Text LCD control
led.h, led.c EVB B/D LED(D1,D2) control
manage.h, manage.c Manage App
inet dhcp.h dchp.c DHCP Client Protocol
dns.h, dns.c DNS Client Protocol
http.h, http.c HTTP Protocol
ping.h, ping.c Ping Protocol
main main.h, main.c EVB B/D F/W main()
rom [webpage] EVB B/D Web Pages
romfs.h, romfs.c EVB B/D Web Pages Image & control
util myprintf.h printf() for debugging
sockutil.h, sockutil.c Utilities relating Socket
util.h, util.c Utilities
iinChip socket.h, socket.c W3150 control

28

EVB-B1 User’s Manual

3.2.2. How to Compile

Sources of Chapter 3.2.1 compile in bundle after arranging SRC items.

<Table 3-14> is part of “main/Makefile”

< Table 3-14: Makefile >

FORMAT = ihex
TARGET =evb_al vX.X.X.X_ZZZZ (X.X.X.X : Version, ZZZZ : iinChip™ Bus Mode)
SRC = main.c\

../mcu/serial.c ../mcu/i2c.c ../mcu/timer.c ../mcu/delay.c ../mcu/irg.c \

-Jutil/util.c ../util/sockutil.c \

.iinChip/socket.c \

./inet/ping.c ../inet/dns.c ../inet/dhcp.c ../inet/httpd.c \

../app/loopback.c ../app/webserver.c ../app/ping_app.c \

.from/romfs.c \

../levb/config.c ../evb/icd.c ../evb/evb.c ../evb/manage.c ../evb/led.c ../evb/channel.c

Compile of EVB B/D can be achived by running make from “main/” directory where the make file
is. After compiling, the name that is assigned at Makefile TARGET and
“evb_al vX.X.X.X_ZZZZ.hex,” the file that is assigned FORMAT are created.

The file “evb_al v1.0.1.2_direct.hex is programmed in AVR using AVR Programming Tools

< Table 3-15 : iinChip™’s DEFINE Option >

#define LITTLE_ENDIAN

#define IINCHIP_DIRECT_MODE 1

#define IINCHIP_INDIRECT_MODE 2

#define IINCHIP_I2C_MODE 3

#define [INCHIP_BUS_MODE [INCHIP_DIRECT_MODE
//#define IINCHIP_BUS_MODE [INCHIP_INDIRECT_MODE
//#define IINCHIP_BUS_MODE [INCHIP_I2ZC_MODE

Since EVB B/D is Little-Endian system, LITTLE_ENDIAN is defined and used. If the target
system is Big-Endian, the defined items should be commented.

If W3150 is intended to be used as different mode other than Direct Bus Mode, use desired Bus
Mode Define as IINCHIP_BUS MODE instead of IINCHIP_DIRECT _MODE. If DEFINE
OPTION of W3150 is changed the sources must be Re-Compiled.

EVB-B1 User’s Manual 29

3.2.3. EVB B/D’s main()

If we take closer look at main(), for certain amount of time, we wait for Manage Program from
RS232 Terminal after initialization of board with board reset. At this point, if RS232 terminal
displays the Manage Program entering command, EVB B/D environment such as network
information and channel Information can be set and ping regeust program can be run.

If Manage Program is done or there is no entering command from RS232 terminal, the
application for each of 4 channels of W3150 is executed and initialized using previously set
network information.

<Fig 3.3> process procedure of EVB B/D main(). Refer to “main/main.c”

If DHCP client exists in the application, ‘sock flag’ should be set with 0x80. As an option flag in
creation of W3150 socket, it's flag that must be set to receive the broadcasting packet. If there is
more than one socket that receives the broadcasting packet, 0x80 is used as option flag in all
W3150 socket creation.

The DHCP client obtains the network information from DHCP server by calling
‘get IP_DHCPS()’ function. If DHCP client application does not exist or fails to obtain network
information from DHCP server, the EVB B/D is initialized with previously-set network information.
After the initialization, it runs test applications of EVB B/D by calling each registered application

handler. For further details on DHCP client program, refer to “ Chapter 3.2.5.5 DHCP Client.”

30 EVB-B1 User’s Manual

<Table 3-16: Reference Functions in EVB B/D’s main()>

Function Name Description Location
int main(void) EVB B/D main() main/main.c
void evb_init(void) AVR, Text LCD, evb/evb.c

UART nitialization

void net_init(void) EVB B/D Network nitialization evb/evb.c

void check_manage(void) Manage Program action wait and | evb/manage.c
execution

void register_channel_handler Channel Application Handler resistration evb/channel.c

(u_char ch, void (*handler)(u_char))

void unregister_channel_handler Channel Application Handler calcellation evb/channel.c
(u_char ch)
void init_dhcp_client(SOCKET s, | DHCP Client Program initialization inet/dhcp.c

void (*ip_update)(void),

void (*ip_conflict)(void))

u_int getlP_DHCPS(void) Network Information acquisition from | inet/dhcp.c

DHCP Server

void check_DHCP_state(SOCKET s) Check to expire the leased time from | inet/dhcp.c

DHCP server
void loopback_tcps(u_char ch) Loopback - TCP Server app/loopback.c
void loopback_tcpc(u_char ch) Loopback - TCP Client app/loopback.c
void loopback_udp(u_char ch) Loopback - UDP app/loopback.c
void web_server(u_char ch) Web Server Program app/webserver.c

|
EVB-B1 User’s Manual 31

START
main()

Initialize EVB B/D
evb_init()

v

Check to enter the manage mode
check_manage()

sock_flag = 0x00

sock_flag = 0x80

Unregister i-th Channel Apps Handle

—ChConf[i].type == NOTUSE—

- unregister_channel_handle()
N

Get MAC Addr from EEPROM
get_netconf(&NetConf)

v

Set theMAC Addr to DHCP Cleint Initialize DHCP Client
memcpy(SRC_MAC_ADDR,NetConf.mac,6) init_dhcp_client()

Get a Network Info From a DHCP Server
get_IP_DHCPS()

—Success 7N ChContlil.type = NOTUSE

Y

Register i-th Channel Apps Handle
register_channel_handle(check_DHCP_state())

Register i-th Channel Apps Handle
register_channel_handle(loopback_tcps())

Register i-th Channel Apps Handle
register_channel_handle(loopback_tcpc())

Register i-th Channel Apps Handle
register_channel_handle(loopback_udp())

Register i-th Channel Apps Handle

confli].type ==
register_channel_handle(web_server())

EB_SERVER

Network Configruation
net_init()

Call i-th Channel Apps Handle

<Fig 3.3: EVB B/D’s main()>

32 EVB-B1 User’s Manual

3.2.4. Manage Program

Manage Program is a program that sets up network and channel information by RS232 terminal

and tests application with Ping Request to certain Destination.

Running the manage program can be started by call check_manage() from main() function.
check_manage() checks if there is any entering command to Manage Program from RS232
terminal, that if character ‘M’ or ‘m’ is input or not. And if there is the command, it will enter to
Manage Program through manage_config(). If the user change the configuration, the EVB B/D

automatically reboot and check_manage() is skipped.

START
check_manage()

Check to reset EVB B/D automatically
get_reset_flag()

Y

Reset Automatically? Y
\ 4
Display the Followed Console Message END
“Press 'M' to enter the manager mode”

Clear Reset Flag
set_reset_flag(SYSTEM_MANUAL_RESET)

Check to Press a Key
uart_keyhit()

Get the pressed Key
uartO_getchar()

Wait 10ms
wait_1ms(10)

Y

Display
the Progressing Character(.)

Run Manage Program
manage_config()

<Fig 3.4: check_manage()>

EVB-B1 User’s Manual 33

1 : Network Config
2 : Channel Config
3 : Ping App Test
F
E

. Factory Reset
. Exit

START
manage_config()

—»(Display the Config Menu

Get the pressed Key
sel = uartO_getchar()

Configure Network
bmodify |= manage_network()

E Y
N
Y Configure Channel
bmodify |= manage_channel() \)‘

Test Ping App
ping_request()

Load the Factory Reset Value
load_factory_netconf()
load_factory_chconf()

bmodify = 1

EVB B/D Auto Reset
evb_soft_reset()

<Fig 3.5: manage_config()>

If the EVB B/D is updated, the EVB B/D automatically reboot to apply the updated configuration.

34 EVB-B1 User’s Manual

<Table 3-17: Caller Function at Manage Program >

Function Name

Description

Location

void check_manage(void)

Decision of Manage Program is executed

ot not

evb/manage.c

void manage_config(void)

Manage Program

evb/manage.c

u_char manage_network(void)

Configure Network Information

evb/manage.c

u_char manage_channel(void)

Configure Channel Information

evb/manage.c

u_char get_reset_flag(void)

EVB B/D’s Auto/Manual Reset recognition
and confirm

Auto : SYSTEM_AUTO_RESET
Manual : SYSTEM_MANUAL_RESET

evb/config.h

evb/config.c

void set_reset_flag(u_char flag)

Copy of EVB B/D Reset status

evb/config.c

void load_factory netconf(void)

Factory Reset Network Information

evb/config.c

void load_factory _chconf(void)

Factory Reset Channel Information

evb/config.c

u_int uart_keyhit(u_char uart) Checking the Input from UART(0,1) mcu/serial.c
char uart0_getchar(void) Read one character from UARTO mcu/serial.c
void wait_1ms(u_int cnt) Delay Function mcu/delay.c

void ping_request(void)

Ping Request Test Program

app/ping_app.c

3.24.1

Network Configuration

Network Configuration is a sub-program of Manage Program and built with manage_network().

And it's the program that sets up Network Information of EVB B/D. In general, MAC Address of

Network Information is hardly updated after the initial setup. Accordingly, MAC Address setup

does not provide Configuration Menu such as Source IP, Gateway IP, or Subnet Mask but it

provides hidden menu. Also, MAC Address is not change at the time of Factory Reset. MAC

Address is updated using the Hidden Menu, ‘M’ or ‘m’.

EVB-B1 User’s Manual

35

START
manage_network(

)

Get

get_netconf(&NetConf)

the Network Information

'

(Network Config Menu ><

Display

NETWORK CONFIG"):

mmbhownn —O

: Display Config
: Source IP");

: Gateway IP");

: Subnet Mask");
: DNS Server IP"
: Factory Reset"
: Exit");

S

Get the pressed Key
el = uart0_get_char()

36

Display Network Information

display_netconf()

Get a Value
uart0_gets()

Get a Value
uart0_gets()

Get a Value
uart0_gets()

Get a Value
uart0_gets()

Get a Value
uart0_gets()

Verify the Value
VerifiyIPAddress

0

Update Source IP Address
NetConf.sip = htonl(inet_addr())

Verify the Value
VerifiylPAddress()

N

F-<Verifty OK?

Y

Update G/W IP Address
NetConf.gwip = htonl(inet_addr())

Verify the Value

VerifiylPAddress()

Update S/N Mask
NetConf.sn = htonl(inet_addr())

Verify the Value
VerifiyIPAddress

0

Update DNS IP Address
NetConf.dns = htonl(inet_addr())

Verify the Value
ValidATOI()

Factory Reset
load_factory_netconf()

Update Network Information
set_netconf(&NetConf)

S

<Fig 3.6: manage_network()>

EVB-B1 User’s Manual

<Table 3-18: Reference Functions in manage_config()>

Function Name

Description

Location

u_char manage_network(void)

Configure Network Information

evb/manage.

C

void get_netconf(NETCONF*
pNetConf)

Get the Network Information that is

previously set

evb/config.c

void set_netconf(NETCONF*
pNetConf)

Update the Network Information

evb/config.c

void display_netconf

Outputs the Network Information to

evb/config.c

(NETCONF* pNetConf) the terminal

Void load_factory _netconf(void) Load Factory Reset Network evb/config.c
Information

char uart0_getchar(void) Read one character from UARTO mcu/serial.c

int uart_gets(u_char uart, char * str, Read text lines from UART(0,1) mcu/serial.c

char bpasswordtype, int max_len)

char VerifylPAddress(char* src)

Check if the string is IP Address

util/sockutil.c

Unsigned long htonl

(unsigned long hostlong)

Transforms ordering of Long Type
Data

util/sockutil.c

Unsigned long inet_addr

(unsigned char* addr)

Transforms IP string into long type

util/sockutil.c

3.24.2 Channel Configuration

Channel Configuration, a sub-program of Manage Program is made of manage_config() and
decides which application to apply for each of 4 channels of W3150.

The application type that can be set up, there are DHCP Client, Loopback TCP Server/Client,
Loopback UDP, and Web Server Program. Each Channel can be set up with any one of the
applications above. But the DHCP Client can only be supported by the first channel and the
setting cannot be repeated on other channel.

TCP Server Program (LB_TCPS,WEB_SERVER) can be set repeatedly by channel and in such
case the same port can be used. Here, the number of clients is as many as the same port
number. Other application can be set repeatedly by channel but the same port number cannot

use.

|
EVB-B1 User’s Manual 37

<Table 3-19: Constraint by Application Types>

APPTYPE Repeat Port Repeat Destination IP
Setups Setup
DHCP_CLIENT X X X
O, supports all the simultaneously
LB_TCPS 0] connected clients as many as the number X
of repeated ports
LB_TCPC O X O
LB_UDP O X
0, supports all the simultaneously
WEB_SERVER O connected clients as many as the number X
of repeated ports

START
manage_channel()

CHANNEL CONFIG")

: Display Config
: 1st Channel
1 2nd Channel

Get the Channel Information
get_chcocnf(&ChConf)

: 4th Channel

0
1
2
3 : 3rd Channel
4
F : Factory Reset
£

v

: Exit

<C Display

hannel Config Menu /‘

N

Get the pressed Key
sel = uart0_getchar()

38

Display Channel Information
display_chconf()

Select Apps Type
select_ch_app()

Factory Reset

load_factory_chconf()

set_chconf(&ChConf)

Update Channel Information (END >

<Fig 3.7: manage_channel()>

EVB-B1 User’s Manual

< Table 3-20: Reference Functions in manage_channel() >

Function Name Description Location
u_char manage_channel(void) Configure Channel Information evb/manage.c
void select_ch_app Select available Application Type and Setup | evb/manage.c

(CHCONF* pChConf, u_char ch) required factors

void get_chconf Get setuped Channel Information evb/config.c

(CHCONF* pChConf)

void set_chconf Upgrade setuped Channel Information evb/config.c

(CHCONF* pChConf)

void display_chconf Output setuped Channel Information through | evb/config.c
(CHCONF * pNetConf) Terminal

void load_factory_chconf(void) Factory Reset Channel Information evb/config.c
char uart0_getchar(void) Read one character from UARTO mcu/serial.c
3.24.3 Ping Request Program

Ping Request Program is a program that sends Ping Request to certain destination. It uses

ICMP protocol message on IP protocol and made with ping_request().

ping_request() is created with form similar to Ping program in DOS command prompt. It sends

Ping request to destination after analyzing and processing the options.

Both domain name and IP address can be used as destination address for Ping request. In case
of using domain name, domain name is changed into IP address using gethostbyname() or DNS.
With the changed IP address the Ping request is sent.

When IP address is used with ‘-a’ option, domain name can be obtained through
gethostbyaddr() from DNS Server and the Ping request is sent to the IP address. When IP
address is used without the ‘-a’ option, Ping request is sent to input IP address without the

connection with DNS.

gethostbyname(), gethostbyaddr() is DNS-related functions. For further information, refer to

Chapter 3.2.5.6 DNS Client. <Fig 3.8> and <Fig 3.9> are processing procedures of

ping_request().
<Fig 3.8> creates tokens of inputs of Command, Option, and Option Value and decides the

related Bit of Argument Flag(PingArgsFlags).

|
EVB-B1 User’s Manual 39

<Fig 3.9> calls ping() based on relevant option and option after checking the validity of
command, option, and option value with bits of argument flag. ping() sends Ping request

message to certain destination and process the ICMP message which is received from any
destination.

40 EVB-B1 User’s Manual

ping_request()

Declare & Initialize Local variables

PINGLOG PingLog:
char command[81];

char gname [MAX_QNAME_LEN] . : . o
charx NextTok; Usage : ping [-t] [-a] [-n count] [-] size] [-w timeout] destination-list

. Options :
char Peerlp[ﬁOl], -t Ping the specified host until stopped.
U—_'°”Q peerip: To see statistics and continue - type Control-Break;
char PingArgsFlags = 0; To stop - type Control-C.
int pingent, pingsize, pingtimeout: -a Resolve addresses to hostnames
-ncount Number of echo requests to send.
* -l size Send buffer size.
Display the Usage of Ping -w timeout Timeout in milliseconds to wait for each reply.
Call ping_usage()

pmgcm:p\ngswzezpmgﬂmeoutzo
PingArgsFlags = 0
Display the
Prompt

Get a command from
RS232 Console program

Get a First token from the command
Covert it to uppercase string

Ping
Processing

pingent = -1
PingArgsFlags |= 0x01

PingArgsFlags |= 0x02

4—{ PingArgsFlags |= 0x80 ‘

Display the Usage of Ping
Call ping_usage()

- _ Bad
PingArgsFlags |= 0x80

Copy the Destination-list to gname
PingArgsFlags |= 0x20

<Fig 3.8: ping_request()>

EVB-B1 User’s Manual 41

\ J
END of Processing

Convert the Internet IP Address into a Internet Domain Name
Call gethostbyaddr(peeip,qnam)

Convert the Internet Domain Name into a Internet IP Address
Call gethostbyname(anam)

END of Processing

END of
Processing

-

-

Display the Internet
Domain Name

A
Send the Ping Request To the destination
Call ping(&PingLog)

Fail to Ping
Request

Display the Result of Ping Request
Call DisplayPingStatistics(PingLog)

Y

END of Processing j¢————————

<Fig 3.9: ping_request() — Continue>

42 EVB-B1 User’s Manual

Let's take a brief look at Ping message before we proceed to Ping program.

Ping message has the value of ‘0’(Ping Reply) or ‘8'(Ping Request) at Type Field and Code
Field of ICMP Message has 0. Also, Type Dependant Data Field(4Bytes) of ICMP Message can
be re-defined as ID Field(2Bytes), Sequence Number Field(2Bytes) respectably. Data Field of
ICMP Message is filled with the Ping Data to be looped back.

Finally, it calculates the checksum of ICMP header and Ping data of which the checksum fields

are 0. After the calculation, it replaces 0 checksum fields with the newly calculated values.

<Fig 3.10> is a diagramming representation of the relationship between the ICMP Message

Format and the Ping Message.

0 7 8 15 0 7 8 15
Type Code
(1Byte) (1Byte) gor0 0
Checksum
(2Bytes) Checksum
ID
Type Dependent Data (2Bytes)
(4Bytes) Sequence Number
(2Bytes)
Data Ping Data
ICMP Message Ping Message

<Fig 3.10: ICMP Message VS Ping Message>

Checking the Ping Reply about Ping Request can be done by checking if the values of ID,
sequence number and ping data field are same. In case the Ping Reply does not come back in
wait time, the ping can be sent again. In such case the Ping request is sent with the sequence
number incremented by 1.

Ping Request message transmission and checking the Ping Reply message were done by
ping(). The elements of ping() are Destination IP Address, Ping Reply Wait Time, number of
Ping Requests, and Ping Data size and received Ping Replies are analyzed and processed to fit

the elements.

<Fig 3.11> is the process of ping() and Ping message is defined and used as the Data Type of

EVB-B1 User’s Manual 43

<Table 3-21>. Refer to “inet/ping.h”

<Table 3-21: PINGMSG Data Type Definition>

typedef struct _PINGMSG
{
char Type; /I 0 - Ping Reply, 8 - Ping Request
char Code; /I Always 0
u_short CheckSum; /I Check sum
u_short ID; /I ldentification
u_short SeqNum; /I Sequence Number
char Data[1452]; /I Ping Data
}PINGMSG;

Data field size of PINGMSG is 1452 Byte. This is because the sending MTU of W3150 is 1460
bytes and the sum of Code, CheckSum, ID, and SegNum Field Size is 8 Bytes. If we subtract 8
from 1460 we get 1452. Hence, the size is 1452 bytes.

The results from ping() are saved in Data Type defined in <Table 3-22>.

<Table 3-22: PINGLOG Data Type Definition>

typedef struct _ PINGLOG

{
u_short CheckSumkErr;
u_short UnreachableMSG;
u_short TimeExceedMSG;
u_short UnknownMSG;
u_short ARPErr;
u_short PingRequest;
u_short PingReply;
u_short Loss;

YPINGLOG;

The saved Ping log can be output with RS232 terminal through DisplayPingStatistics() function.

<Fig 3.12> shows the process procedures of DisplayPingStatistics().

CheckSumeErr field is incremented by 1 whenever the check sum of Ping Reply from peer is

received wrongly.
UnreachableMSG field and TimeExceedMSG field are incremented by 1 in case of receiving

Unreachable Message or Time Exceeded Message from peer or gateway.

44 EVB-B1 User’s Manual

UnknownMSG field is incremented by 1 when the unknown message is received.

ARPErr field is incremented by 1 whenever ARP Reply is not received upon ARP Request to get
the Hardware Address(MAC Address) of the peer.

PingRequest field is incremented by 1 whenever ping() sends Ping Request.

PingReply field is incremented by 1 whenever Ping Reply for Ping Request from the peer is

received.

Loss field is incremented by 1 whenever Wait Timeout is occurred because nothing gets replied

to the peer in certain period of time after sending Ping Request.

|
EVB-B1 User’s Manual 45

plng() N Presse
TRL-C2

Local Variable Declare & Init

SOCKET s =-1

PING PingRequest

PING PingReply

bLoop = 0, RemainTime =0, IsReceived = 0
long peerip = inet_aton(addr)
PingRequest.type = 8

Yy

Close Socket

close(s)
setlPprotocol(s,0)

PingRequest.code = 0 RemainTime = time / 2
PingRequest.checksum = 0 PingRequest.seqnum-++
PingRequest.id = Random Integer Number PingRequest.checksum =0
PingRequest.seqnum = Random Integer Number IsReceived = 0
Fill in PingRegeust.data with a to w alphabet
Calculate Checksum of PingRequest
A Update PingRequest.checksum
Verify the Arguments +
Send PingRequest to the specified peer
sendto() Reopen Socket
Y close(s) L
setIPprotocol(s,IPPROTO_ICMP)
Open s Socket For IP_RAW Mode socket(s)

PingLog.PingRequest++

setIPprotocol(s,IPPROTO_ICMP) —»(
socket(s,SOCK_IPL_RAW) i

Display Loss
Ping Reply

PingLog.Loss++

Receive PingReply from a peer
recvfrom()

Display
Unknown
Peer

IsReceived = 1

Display
Checksum
Error

Display
Unreachable
Error

Y PingLog.TimeExceedMSG++
IsReceived = 1

Send a Ping-Reply to a peer
Call SendPingReply()

Mt

PingLog.UnreachableErr++
IsReceived = 1

PingReply.type == 8

PingLog.PingReply++
IsReceived = 1

Display
Unknown

Display
Ping Reply OK

<Fig 3.11: ping()>

|
46 EVB-B1 User’s Manual

Q)isplayPingStatistics())

Display a Title

Y
Display the Packet Count
(Sent, Received,Lost)
0g.CheckSumErr >0

N

Display the Check
Sum Error Count

Y Display the Unreachable
Message Count

Display the Time Exceeded >

A

—|

Message Count

Display the ARP Error >

Count

Display the Receive
Timeout Count

Display the PingReply
Count
(END ><—

<Fig 3.12: DisplayPingStatistics()>

/o)

Ping Request program is, as explained previously, a program that uses ICMP Protocol which is
running on IP Protocol. In case of using ICMP channel at W3150, as shown in <Fig 3.11> and <Fig
3.13>, which IP protocol to use must be decided. The socket must be created after calling
setlPProtocol(s, IPPROT_ICMP). IP_RAW Channel must be created by calling
socket(s,SOCK _IPL_RAW,port,flag) when creating the socket. In case of closing ICMP Socket,
setlPProtocol(s, 0x00) should be called after close(s) and clear the ICMP Flag which was set

previously.

|
EVB-B1 User’s Manual 47

SendPingReply()

Declare & Initialize Local variables

SOCKET PingReplySocket;
u_int size =len;

size = 1452

Find a Free Socket
Call getSocket(SOCK_CLOSED,S)

A

Assign the socket to PingReplySocket

Fail to Send a Ping
Reply Packet

Specify ICMP Protocol to the PingReplySocket
Call setlPprotocol(PingReplySocket,IPPROTO_ICMP)

Create a IP RAW Socket
Call socket(IP_RAW)

Successed to Create?

Make a PingReply Packet

pingrequest.Type = 0
pingrequest.Code = 0
pingrequest.CheckSum = 0

Calculate the check sum of pingrequest

Send a Ping Reply to the specified peer
Call sendto(IP_RAW)

Successed to Send?

Fail to Send

Close the PingReplySocket
Call close(PingReplySocket)

A

A
Clear the ICMP Proctocol of IP RAW
Call setlPprotocol(0)

h J
» RETURN

<Fig 3.13: SendPingReply()>

EVB-B1 User’s Manual

<Table 3-23:

Reference Functions in ping_request()>

Function Name

Description

Location

void ping_request(void)

Ping Request program

app/ping_app.c

void ping_usage(void)

Outputs the instruction of Ping Request

app/ping_app.c

program
char ping Sends Ping Request to specific | app/ping_app.c
(int count, u_int size, u_int | destination, and processes ICMP

time, u_char* addr, PINGLOG* | message received from any destination.

log)

void DisplayPingStatistics
(PINGLOG log)

Outputs the results from ping() calling

app/ping_app.c

void setlPprotocol
(SOCKET s, u_char ipprotocol)

Assigns IP protocol of the related socket

iinChip/socket.c

char socket(SOCKET s, | Creates sockets related to as TCP/UDP/IP | iinChip/socket.c
u_char protocol, u_int port,

u_char flag)

void close(SOCKET s); Close the related socket iinChip/socket.c
int sendto(SOCKET s, Sends Datagram packet to specific | iinChip/socket.c
const u_char * buf, u_int len, | destination.

u_char * addr, u_int port)

int recvfrom(SOCKET s, Receives Datagram packet from any | iinChip/socket.c

u_char * buf, u_int len,

u_char * addr, u_int * port)

destination

SOCKET getSocket(unsigned
char status, SOCKET start)

Searches for socket has the designated

status

util/sockutil.c

EVB-B1 User’s Manual

49

3.2.5. Applications

It's a Network Application using W3150 and it includes Loopback Program, Web Server, and

DHCP Client. Application is selected by Manager Program.

3.25.1 Loopback TCP Server

The Loopback TCP Server program, EVB B/D works as server mode and AX1, the PC testing
program works as client mode. AX1 tries to connect to EVB B/D and if the connection is
successful, AX1 transmits the data stream through the TCP channel. EVB B/D returns back the
data stream from AX1 without processing through the TCP Channel.

Loopback TCP Server Program uses loopback tcps() and <Fig 3.14> shows the process

procedure of loopback_tcps().

loopback_tcps()

Declare & Initialize Local Variables
u_char * data_buf = TX_BUF

v

Select Socket Status
select(ch,SEL_CONTROL)

Y Select Recieved Size Y Receive the Data
LB e UEHELE len = select(ch,SEL_RECV) » recv(ch,data_buf,len)

N N ¢
OCK_CLOSE_WAIT? Close Socket Send the Received Data
N
SOCK_CLOSED?

close(ch) send(ch,data_buf,len)

'

Create a TCP Socket
socket(ch,SOCK_STREAM,port,flag)

v

Wait a connetion with a client
NBlisten(ch)

> RETURN

< Fig 3.14 : loopback_tcps() >

|
50 EVB-B1 User’s Manual

<Table 3-24: Reference Functions in loopback_tcps()>

Function Name Description Location
void loopback_tcps(u_char ch) | Loopback TCP Server program app/loopback.c
int select Get the socket status, data size that is | iinChip/socket.c
(SOCKET s, u_char func) transferable and received data size.
char socket(SOCKET s, | Create the socket iinChip/socket.c
u_char protocol, u_int port,
u_char flag)
void NBIlisten(SOCKET s) It puts related Socket as server mode iinChip/socket.c
int send(SOCKET s, Transfer the data to the connected socket. | iinChip/socket.c

const u_char * buf, u_int len)

int recv(SOCKET s, Receive the data to the connected socket. | iinChip/socket.c

u_char * buf, u_int len)

void close(SOCKET s); Close the related Socket. iinChip/socket.c

If the server socket is in SOCK_CLOSED status, loopback tcps() calls socket() with the
elements of SOCK_STREAM, Listen Port Number, and Option Flag to create TCP server socket.

The socket() function change the socket status as SOCK_INIT regardless of the previous
socket status. If the server socket is created successfully, it's put in TCP Server Mode after
calling NBlisten() with the server socket as the parameter. NBlisten() makes the server socket
status as SOCK_LISTEN status and maintains SOCK_LISTEN status until any client's

connection.

At this point, when any client tries to connect to the server socket, the server socket status is
changed from SOCK_LISTEN to SOCK_ESTABLISHED. This is when the connection between
Client and Server is complete and data transfer is possible in SOCK_ESTABLISHED status.
Data is transferred using recv() and send() at the SOCK_ESTABLISHED. The data transfer here
is 1-on-1 transfer between EVB B/D(The server) and AX1(The client).

In the SOCK_ESTABLISHED status if the client requests closing of the connection, the server
socket status is changed from SOCK ESTABLISHED to SOCK CLOSE WAIT. In
SOCK_CLOSE_WAIT status data communication is not possible and the server socket must be
closed. In SOCK_CLOSE_WAIT status, close() is called to close socket. close() changes the

socket status to SOCK_CLOSED regardless of previous socket status.

EVB-B1 User’s Manual 51

3.25.2 Loopback TCP Client

At Loopback TCP Client program, EVB B/D works in client mode and AX1, PC test program,
works in server mode. EVB B/D tries to connect to AX1 which is waiting as the server, if the
connection is successful EVB B/D receives data stream through TCP channel and then EVB

B/D sends back the received data stream to AX1 without processing.

Loopback TCP client program is created with loopback tcpc() and <Fig 3.15> is processing
procedure of loopback_tcpc().

If the client socket is in SOCK_CLOSED status, loopback tcpc() calls socket() with the
elements of SOCK_STREAM, Any Port Number, and Option Flag to create TCP client socket.

In creating socket here, any port number is used for get_system_any port(). This is because
connection may be failed if it tries to connect to the same server with same port number. After
successfully creating the socket, call NBconnect() with the elements of the client socket to

connect to the AX1 server.

NBconnect() makes the socket status into SOCK_SYSSENT and keeps the status as
SOCK_SYSSENT until it receives the authorization for connection from the server. If the
connection is successful the socket status is changed from SOCK_SYSSENT to
SOCK_ESTABLISHED. In SOCK_ESTABLISHED status the operation is same as explained for
loopback_tcps().

|
52 EVB-B1 User’s Manual

loopback_tcpel()

Declare & Initialize Local Variables
u_char * data_buf = TX_BUF

v

Select Socket Status
select(ch,SEL_CONTROL)

len

OCK_ESTABLISHED

Select Recieved Size
= select(ch,SEL_RECV)

N
SOCK_CLOSE_WAIT

N

recv(ch,data_buf,len)

Receive the Data

v

Close Socket
close(ch)

Send the Received Data
send(ch,data_buf,len)

'

socket(ch,SOCK_STREAM,any port,flag)

Create a TCP Socket

v

NBconnect(ch,destip,destport)

Wait a connetion with a client

'

> RETURN jf-——

<Fig 3.15: loopback_tcpc()>

<Table 3-25: Reference Functions in loopback_tcpc()>
Function Name Description Location
void loopback_tcpc(u_char ch) Loopback TCP Client Program app/loopback.c

int select
(SOCKET s, u_char func)

Get the socket status, the size of the

data that can be sent and received.

iinChip/socket.c

char socket(SOCKET s, u_char

protocol, u_int port, u_char flag)

Related socket can be created as
TCP/UDP/IP

iinChip/socket.c

char NBconnect(SOCKET s,

u_char * addr, u_int port)

Attempts to connect to the specific

server with related socket

iinChip/socket.c

int send(SOCKET s, Sends the data to related socket that is | iinChip/socket.c
const u_char * buf, u_int len) in connection

int recv(SOCKET s, Receives the data to related socket that | iinChip/socket.c
u_char * buf, u_int len) is in connection

void close(SOCKET s); Close the related socket iinChip/socket.c

u_int get_system_any_port(void)

Get any port number.

evb/config.c

EVB-B1 User’s Manual

53

3.25.3 Loopback UDP

Loopback UDP Program is a program that uses unicast datagram communication of UDP
protocol. It operates same as Loopback TCP Server/Client program does. UDP communication
includes unicast datagram communication and broadcast datagram communication, and

basically supports 1-to-many communication that is used for many destination with one channel.

Loopback UDP program uses loopback_udp() and <Fig 3-16> shows processing procedure of
loopback_udp().

loopback_udp()

Declare & Initialize Local Variables
u_char » data_buf = TX_BUF
u_long destip = 0

u_int destport = 0

Select Socket Status
select(ch,SEL_CONTROL)

Select Recieved Size Y Receive the Data
len = select(ch,SEL_RECV) recvfrom(ch,data_buf,len,&destip, &destport)
Y N ¢
Send the Received Data
sendto(ch,data_buf,len,destip,destport)

Create a TCP Socket
socket(ch,SOCK_DGRAM,port,flag)

'

RETURN

v

<Fig 3.16: loopback_udp()>

54 EVB-B1 User’s Manual

<Table 3-26: Reference Functions in loopback_udp()>

Function Name Description Location
void loopback_udp(u_char ch) Loopback udp program app/loopback.c
int select Gets the socket status, the size of | iinChip/socket.c
(SOCKET s, u_char func) transferable and received data.

char socket(SOCKET s, u_char | Creates related socket as TCP/UDP/IP. | iinChip/socket.c

protocol, u_int port, u_char flag)

int sendto(SOCKET s, Sends data to specific port of specific | iinChip/socket.c
const u_char * buf, u_int len, | destination related socket

u_char * addr, u_int port)

int recvfrom(SOCKET s, Sends data to any port of any |iinChip/socket.c
u_char * buf, u_int len, u_char * | destination related socket

addr, u_int * port)

void close(SOCKET s) Close related socket iinChip/socket.c

If the udp socket is in SOCK_CLOSED status, socket() is called using SOCK_DGRAM, Port
Number, and Option Flag as the elements to create the UDP socket.

UDP communication, as opposed to TCP, is a datagram communication without the requirement
of connection process. So, direct data communication is possible immediately after socket
creation. If data communication is created after the creation of UDP socket, that is, after sock
socket status is SOCK_INIT status, the udp socket status can be changed from SOCK_INIT to
SOCK_UDP.

It continuously performs data transformation with the changed socket in SOCK_UDP status.
Here, not like TCP for data communication which uses send() and recv(), sendto() and

recvfrom() are used.

This is because TCP is 1-to-1 communication method of which destination is known but UDP is
1-to-many communication without connection procedure. sendto() sends data to specific port of
specific destination that is sent as an element, recvfrom() is used to receive the incoming data
from temporary port. Destination information from recvfrom() is informed to user using destip
and destport which are sent as elements.

In loopback udp(), there is no example of using close(), but in case that the UDP

communication is not needed anymore, close() can be called always and close the udp socket.

|
EVB-B1 User’s Manual 55

3.254 Web Server

Web Server program is a TCP server program using HTTP protocol which is used on TCP
Protocol. Before building Web server program, message structure of HTTP protocol that is
transmitted between Web server and Web client(Web browser) are needed to be understood.
HTTP, which stands for Hyper Text Transfer Protocol, is a protocol used in Internet for

transferring between Web server and client browsers.

<Table 3-27: Web Browser’s HTTP Reqeust Operation Procedure >

Request of Client(Web Browser)
--> URL Analysis(Transforming Domain Name to IP Address at DNS)
--> Connection to server at the other end
--> Client(Web Browser) requests document wanted from URL

--> Sending Document(Server)/Receiving Document (Client)

--> Displays received document on the browser

Web Server program analyzes method and URI of HTTP Request message received from web
browser, and in case the related URI simply requests for web page, then the page will be sent. If
it requests an action such as CGIl(Common Gateway Interface) then it takes the action and the

result is informed in web page.

<Fig 3.17> shows HTTP message flow between web server and web client and <Table 3-28>

shows structure of HTTP message.

_- | HTTP Request

< HTTP Response

Web Browser EVB B/D(Web Server)

<Fig 3.17: HTTP Message Flow>

56 EVB-B1 User’s Manual

<Table 3-28: HTTP Message Format>

HTTP-message = Simple-Request
| Simple-Response
| Full-Request
| Full-Response
Full-Request = Request-Line
*(General-Header | Request-Header | Entity-Header)
CRLF
[Entity-Body]
Full-Response = Status-Line
*((General-Header | Response-Header | Entity-Header) CRLF)

CRLF

[Entity-Body]
Request-Line = Method SP Request-URI SP HTTP-Version CRLF
Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF
Entity-Header = Allow

| Content-Encoding
| Content-Length
| Content-Type
| Expires
| Last-Modified
| extension-header
Entity-Body =*OCTET
Method ="GET"|"HEAD"|"POST" | extension-method

For further information on HTTP message, refer to RFC2616. HTTP request message varies
depending on web browser. <Table 3-29> shows the examples of HTTP message

communication between Internet Explores on Windows 2000 and EVB B/D.

|
EVB-B1 User’s Manual 57

<Table 3-29: HTTP MESSAGE BETWEEN EVB B/D AND WEB BROWSER>

HTTP Request Message
Ex1> GET wiz_log.gif HTTP/1.1CRCF
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.-ms-
powerpoint, application/vnd.-ms-excel, application/ms-word, */*CRCF
Accept Language: koCRCF
Accept Encoding: gzip, deflateCRCF
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0; .NET CLR
1.3705)CRCF
Host: 192.168.0.2CRCF
Connection: Keep-AliveCRCF
CRCF
Ex2> GET http://192.168.0.2/LCDNLED.CGI?Icd=hi.+EVB B/D&led0=on HTTP/1.1CRCF
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.-ms-
powerpoint, application/vnd.-ms-excel, application/ms-word, */*CRCF
Accept Language: koCRCF
Accept Encoding: gzip, deflateCRCF
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0; .NET CLR
1.3705)CRCF
Host: 192.168.0.2CRCF
Connection: Keep-AliveCRCF
CRCF
HTTP Response Message
Ex1> HTTP/1.1 200 OK CRCF
Content-Type: text/htmICRCF
Content-Length: 1451CRCFCRCF
[Html Document]
Ex2> HTTP/1.1 200 OKCRCF
Content-Type: gifimageCRCF
Content-Length: 613CRCFCRCF

[GIF IMAGE]

Web Server program is composed of web_server() which manages HTTP server socket and
proc_http() which manages HTTP message.

<Fig 3.18> is processing procedure.

|
58 EVB-B1 User’s Manual

Declare & Initialize Local Variables
u_char * http_request = RX_BUF

v

Select Socket Status
select(ch,SEL_CONTROL)

<SOCK_ESTABLISHED? Y
N

Select Recieved Size on >0 Y Receive the Data
len = select(ch,SEL_RECV) recv(ch,http_request,len)

" v
Y Close Socket Process the HTTP Message
e s close(ch) http_proc(ch,http_request,len)
N ¢ ¢
Y Create a TCP Socket Wait for sending the HTTP
socket(ch,SOCK_STREAM,port,flag) Response completely
Wait a connetion with a client Close Socket
NBlisten(ch) close(ch)

Y
» RETURN

<Fig 3.18: web_server()>

Since web_server() is TCP server program is built in the similar way as loopback_tcps() as
explained in Chapter 3.2.5.1. Difference between web_server() and loopback_tcps() is in the
data communication codes. web_server() calls http_proc() that processes HTTP request
message from web browser at SOCK_ESTABLISHED of the http socket.

After calling function http_proc(), it waits until the HTTP Response message about HTTP
Request from web browser, and then calls close() to close the http socket.

This socket close is called Active Close and, in the case, EVB B/D requests the close to the
client first. For your reference, Passive Close is where client requests disconnection first. The
reason why web server program supports Active Close is that EVB B/D support to connect other

client’s connection.

EVB-B1 User’s Manual 59

proc_http()

Declare & Initialize Local Variables
prog_charx contents

char* name, param

u_int file_len, send_len
http_response = (u_cha*) TX_BUF

Analyze the HTTP request
parse_http_reqeust(&request,buf)

equest.Method == METHOD_ERR

N
RETURN

Send Reqgeust Error Page
send(ERROR_REQUEST_PAGE)

Extract a Name in URI
name = get_http_uri_name(http_ request)

RETURN ‘
+—> name = index.html

Find a type of the request
find_http_uri_type(&request. TYPE,name)

equest. TYPE == PTYPE_CGI—

Processing

Find a file in the ROMFILE
search_file(name,&content,&file_len)

Send Unknown Page
send(ERROR_HTML_PAGE)

Make the ResonseHead for the request. TYPE
make_http_response_head(http_response,reqeust.TYPE,len)

Send the HTTP Response Header
send(http_response)

A
RETURN N

send_file = file_len

‘ send_file = TX_RX_MAX_BUF_SIZE -1 ‘

L]

‘Copy content To http_response F—

Replace System Environment Variables
send_len = replace_sys_env_value()

Send a HTTP Response Body ‘ ‘

send(http_response)

content += send_len
file_len —= send_len

<Fig 3.19: http_proc()>

|
60 EVB-B1 User’s Manual

http_proc() calls parse_http_request() to analyses the HTTP Request message received from
web browser. If the METHOD of analyzed HTTP Request Message is “GET”, “HEAD”, or
“POST", get http_uri_name() is called and URI Name is extracted from HTTP Request
message. If extracted URI Name is “/” then replaces URI Name “/” to “index.html” which is web
server default page of EVB B/D because this means that web browser is requesting default
page of web server.

After getting the HTTP Request Type of HTTP Request Message by calling find_http_uri_type(),
if HTTP Request Type is “CGI” then it performs the related CGl command process.

After processing CGI commands or in case that HTTP Request Type is not CGl, search file with
URI Name from ROM File Image which is built in EVB B/D.
If the file is found, create HTTP Response message and send it.

HTTP Response message is composed of HTTP Response Header transmission and HTTP
Response Body transmission. For transmission of HTTP Response Header, it calls
make_http_response_head() using HTTP Request Type as the element to create HTTP
Response Header. After transmitting the created HTTP Response Header, since the HTTP
Response Body is transmitted. For example, if the HTTP Response body is any file in ROM File
Image, the files is much bigger than the MTU of W3150. Hence it has to be divided into
maximum size of W3150 before the transmission. At this point, if system environment variables
that are defined in EVB B/D in HTTP Response Body are existent, it -calls
replace_sys_env_value() and replaces system environment variables to system environment
value that was stored in EVB B/D.

<Table 3-30: System Environment Variables Usage at “evbctrl.html” >

<tr>

<td width="110" height="22">...Source IP</td>

<td width="240" height="27"><input name="sip" type="text" size="20" value="SRC_IP_ADDRES"></td>
</tr>
<tr>

<td width="110" height="22">...Gateway |P</td>
<td height="27"><input name="gwip" type="text" size="20" value="$GW_IP_ADDRESS$"></td>
</tr>
<tr>

<td width="110" height="22">...Subnet Mask</td>

<td height="27"><input name="sn" type="text" size="20" value="$SUB_NET__ MASK$"></td>
</tr>
<tr>

<td width="110" height="22">...DNS Server IP</td>

<td height="27"><input name="dns" type="text" size="20" value="DNS_SERVER_IP"></td>
</tr>
<tr>

<td width="110" height="22">...MAC Address</td>

<td height="27">$SRC_MAC_ADDRESS$</td>
</tr>

EVB-B1 User’s Manual 61

<Table 3-30> is part of “evbctrl.html” in ROM File Image of EVB B/D.

The length of the system environment variables is defined to fit the length of system
environment value to be replaced. For example, if Source IP Address of EVB is expressed in
string the maximum is 16. Hence the length of $SRC_IP_ADDRESS$ is 16 as well. ‘ROM File
System’ of EVB B/D can be created with “ROMFileMaker.exe” provided by WIZnet. Refer to

“ROM File Maker Manual Vx.x.pdf” for further information.

HTTP Request message can be divided into Method and Request-URI by parse_http_request()
and stored in ‘st_http_request’ Date Type which is defined in <Table 3-31>. It gets the requested

URI Type with get_http_uri_type().

<Table 3-31: “st_http_request” Data>

#define MAX_URI_SIZE (2048 - sizeof(char)*2)

typedef struct _st_http_request

{
u_char METHOD; /* request method(METHOD_GET...). */
u_char TYPE; [* request type(PTYPE_HTML...). */
char URI[MAX_URI_SIZE]; [* request file name. */

}st_http_request;

|
62 EVB-B1 User’s Manual

Garse_http_req uest(D

Get a Method Token
nexttok = strtok(buf,SP)

request->method = | |request->method = request—>method =
METHOD_GET METHOD_HEAD (I\J/IETHOD_POST

Y

.| Get a Request-URI Token |
" | nexttok = strtok(NULL,SP) |~

v
request->method = |
‘@’ METHOD_ERR |~

N

Copy nexttok to request—>URI RETURN

<Fig 3.20: parse_http_request()>

find_http_uri_type()

‘type = PTYPE_HTML‘ ‘ type = PTYPE_TEXT ‘ ‘type = PTYPE_FLASH ‘ type = PTYPE_PDF

[type = PTYPE_GIF| [type = PTYPE_JPEG | [type = PTYPE_MPEG |
' Y. S

- RETURN -

<Fig 3.21: find_http_uri_type()>

Request-URI which is saved in URI [MAX_URI_SIZE] of st_http_request has URI Name before
“?” symbol and Query String after “?” sign. When Request-URI is transferred from Web Browser
to Web Server, SP (Space) text is transmitted in the form of ‘+' and, other Reserved Texts are
transmitted in the form of “%HEXHEX.” Accordingly, Reserved Texts in Request-URI needs to
be decoded to the previous value, from ‘+' to SP and from %HEXHEX to related ASCII vales.
For the details of Request-URI decoding refer to RFC1738. URI name of Request-URI is

extracted with get http_uri_name().Query String of Request-URI can include one or more

EVB-B1 User’s Manual 63

“variable=value” pair that has “&” as a separator. Through function get_http_param_value() it

can extract the wanted variable value in Query String.

get_http_url_name() get_http_param_value()
Declare & Initialize Local Variables Declare & Initialize Local Variables
char tempURI[MAX_URI_SIZE] char tempURI[MAX_URI_SIZE]
charx uri_name charx name = NULL

Copy uri to tempURI
Copy uri to tempURI
Get the URL name Token

uri_name = strtok(tempURI,?) Find param_name in tempURI
name = strstr(tempURI,param_name)

‘ Find */" in uri_name ‘ Extract the value of parma_name

@> name +=strlen(param_name)+1

name=strtok(name,’ & \n\n\t\0”)

v

Decoding the escape characters
unescape_http_uri(name)

Replace + with SP
RETURN ‘ replacetochar(name, +,SP) ‘ ‘

<Fig 3.22: get_http_uri_name() & get_http_parse_value()>

uri_name++

CGI processing of Web Server Program at EVB B/D is different from general Web Server
Program which is based on OS. Web Server Program which is based on OS creates separate
process to take case of communication between processes independently. However, Web
Server of EVB B/D is OS-less, so, instead of making independent process, it calls relevant
functions to deal directly with CGI processing. EVB B/D supports “NETCONF.CGI” which
updates Network Information and “LCDNLED.CGI” which controls text LCD, D1/D2 LED of EVB
B/D. <Fig 3.23> and <Fig 3.24> shows both CGI processings.

64 EVB-B1 User’s Manual

Processing

Extract the value of ‘sip’
param = get_http_param_value(http_request->uri,’sip’)

5 Y Update Source IP Address
NetConf.sip= htonl(inet_addr(param))
N

Extract the value of ‘gwip’
param = get_http_param_value(http_request—>uri,”gwip’)

@. Update Gateway IP Address
NetConf.gwip= htonl(inet_addr(param))
N

Extract the value of ‘sn’
param = get_http_param_value(http_request—>uri,’sn’)

Update Sbunet Mask Value
NetConf.sn= htonl(inet_addr(param))

Extract the value of ‘dns’
param = get_http_param_value(http_request—>uri,’sn’)

Update DNS Server IP Address
NetConf.dns= htonl(inet_addr(param))

Save the Network Information to EEPROM
set_netconf(&NetConf)

v

Send a CGl Success Page
send()

EVB B/D Auto Reset
evb_soft_reset()

END

<Fig 3.23: NETCONF.CGI Processing>

|
EVB-B1 User’s Manual 65

Processing

Extract the value of ‘lcd’
param = get_http_param_value(http_request—>uri,’lcd’)

Display the Value On Text LCD
*(param+16) = 0
evb_set_|cd_text(1,param)

Extract the value of ‘led0’

param = get_http_param_value(http_request->uri,’led0’)

Turn the D1 LED on
led_on(0)

4
Turn the D1 LED off

led_off(0)

T
Extract the value of ‘led1’
param = get_http_param_value(http_request—>uri,’led1’)

\ J

Turn the D2 LED on
led_on(0)

Turn the D2 LED off
led_off(0)

Set the file name to be sent for HTTP response
strcpy(name,”evbctrl.html”)

v

Find the uri type of the file
find_http_uri_type()

END

<Fig 3.24: LCDNLED.CGI Processing>

<FORM> of NETCONF.CGI is submitted in “POST” Method. <FORM> submitted using “POST"
Method is not submitted in Query String but submitted in Entity Body of HTTP Request Message.

Such Value of Parameter for NETCONF.CGI, also, is used to extract related Parameter Value

using get_http_param_value().

<FORM>of LCDNLED.CGI is submitted in “GET” Method and <FORM> submitted as “GET”"
Method is submitted in Query String of Request-URI. Parameters submitted by Query String of

Request-URI can also extract Parameter Value using get_http_param_value().

66 EVB-B1 User’s Manual

<Table 3-32:

Reference Functions in web_server()>

Function Name

Description

Location

void web_server(u_char ch)

Web Server Program

app/webserver.c

void proc_http(SOCKET s,

Processes HTTP Message using related

app/webserver.c

u_char * buf, int length) socket
u_int replace_sys_env_value Change Pre-defined System | app/webserver.c
(u_char* base, u_int len) Environment Variables in HTTP

Response Message to Real Values.

void parse_http_request

(st_http_request *, u_char *)

Analyzes and processes HTTP Request
Message and saves it in st_http_request

structure.

inet/httpd.c

void find_http_uri_type

(u_char *, char *)

Gets MIME Type of HTTP Request

Message.

inet/httpd.c

char* get_http_uri_name

(char* uri)

Gets Request-URI Name of HTTP

Request Message.

inet/httpd.c

char* get_http_param_value

(char* uri, char* param_name)

Gets Relevant Parameter Value in

Query String of Request-URI

inet/httpd.c

void unescape_http_uri(char *

url)

Transforms Escape Character

inet/httpd.c

void make_http_response_head

(char *, char, u_long)

Creates header of HTTP Response

Message

inet/httpd.c

int select
(SOCKET s, u_char func)

Informs the socket status and size of
data transmittable and size of received

data,

iinChip/socket.c

char socket(SOCKET s, u_char

protocol, u_int port, u_char flag)

Creates related socket as TCP/UDP/IP

iinChip/socket.c

void NBIlisten(SOCKET s)

Puts the related socket in Server Mode

iinChip/socket.c

int send(SOCKET s,

const u_char * buf, u_int len)

Sends data using connected socket

iinChip/socket.c

int recv(SOCKET s,

u_char * buf, u_int len)

Receives data from the data from the

connected socket

iinChip/socket.c

void close(SOCKET s)

Closes the connection of the socket

iinChip/socket.c

void replacetochar(char * str,

char oldchar, char newchar)

Changes the special characters in text

rows into new characters.

util/util.c

EVB-B1 User’s Manual

67

3.255 DHCP Client

DHCP Client program is a program that assigns the network information from DHCP server in
the network. Note that, If DHCP Client program must be started prior to other program because
it manages Network Information setup. First, review basic facts on DHCP(Dynamic Host

Configuration Protocol) and get further into the usage of DHCP Client program.

DHCP uses UDP protocol in Transport Layer and communicates with DHCP server using
broadcast of UDP. The reason why it uses broadcast is because it has no IP address and DHCP
server IP address is unknown. There are 2 things to be careful in using UDP broadcast at
W3150. One is it requires to set the flag of socket() function as 0x80 and destination IP address
needs to be set '255.255.255.255' for broadcast packet transmission.

<Fig 3.25> is a Message Flow between DHCP Server and Client.

DISCOVER >
DHCP OFFER DHCP
CLIENT SERVER
68 Port REQUEST > 67 Port
< ACK or NACK

<Fig 3.25: DHCP Message Flow>

68 EVB-B1 User’s Manual

First of all, DHPC client broadcasts DISCOVERY message to the local Network. If DHCP server
exists at the network then DHCP server receives Discovery message and provides network
Information such as IP, G/W IP, S/N, and DNS sever IP which can be used by DHCP Client, and
information such as Lease Time to the DHCP Client as OFFER message. DHCP Client can
detect DHCP server by receiving the OFFER message and then it sends REQUEST message
to DHCP server to use the information suggested by DHCP server. After receiving REQUEST
message from DHCP Client, DHCP server finds out if the requested network information is
usable. If it is, it sends ACK message, if not, NACK message is sent to DHCP Client. After
receiving ACK message from DHCP server, DHCP Client uses the offered network Information.
The network information is valid only for the Lease Time suggested by DHCP server. Hence, if
DHCP Client wants to keep using the network information, it retransmits REQUEST message to
DHCP server to maintain network information usually after half of the Lease Time. In this
process, DHCP client can get same or new network information from DHCP server. In case that

it received new network information, the new network information must be used.

Message between DHCP server and client has the format as in <Fig 3.26> with the size of 544
Byte. Refer to document ‘RFC1541’ for detailed explanation for each field of DHCP message
Format. op Field of the first byte decided Request/Reply, and fields after ciaddr is used to
deliver network information, and options field of 312 byte is used to transmit message type or

the information such as Client Identifier.

0 1516 31
op (1) htype (1) ‘ hlen (1) hops (1)
xid (4) 0 1 15 bit
B ‘ MBZ
secs (2) ‘ flags (2) — ‘
ciaddr (4) B : Leftmost Bit
5 If this bit is set to 1, the DHCP Message SHOULD
siaddr (4) be sent as using an IP Broadcast address
4 (preferably 255.255.255.255) as the IP destination
giaddr (4) g address.
chaddr (16))t/ MBZ : Must Be ZERO (Reserved for future use)
e
sname (64) s
file (128)
options (312)
A

<Fig 3.26: DHCP Message Format>

<Table 3-33: DHCP Message Data Type>

|
EVB-B1 User’s Manual 69

typedef struct _RIP_MSG

{
u_char op; // DHCP_BOOTREQEUST or DHCP_BOOTREPLY
u_char htype; /l DHCP_HTYPE10MB
u_char hlen; // DHCP_HLENETHERNET
u_char hops; /I DHCP_HOPS
u_long xid; /I DHCP_XID
u_int secs; /I DHCP_SECS
u_int flags; /l DHCP_FLAGSBROADCAST

u_char ciaddr[4];
u_char vyiaddr[4];
u_char siaddr[4];
u_char giaddr[4];
u_char chaddr[16];
u_char sname[64];
u_char file[128];
u_char OPT[312];
IRIP_MSG,;

DHCP Message of <Fig 3.26> is managed by RIP_MSG Data Type defined in <Table 3-33>.
Refer to “inet/dhcp.h”

To take a brief look at the Option Field of DHCP Message, Options Field has the format of <Fig
3.27>, it contains Magic Cookie Field, a Lease Identification Cookie with the size of 4 Byte and
Code Set ranged from Code 0 to Code 255. From Codel to Code 254, codes are composed of
pairs of {Code, Len, Value}, and Code 0 and Code 255 are composed of {Code} only. For further

explanation of each Code of Options Field, refer to RFC1533.
0 7 8 15

Magic Cookie (4)

Code (1) Len (1)

Value

Code Len

Value

»w O ~+~< DN — W

Zero Padding

<Fig 3.27: DHCP Message’s Option Field Format>

<Table 3-34: DHCP Message Option Code Definition>

Code Enumeration Type Description

0 padOption used to cause subsequent fields to align on word boundaries

|
70 EVB-B1 User’s Manual

1 subnetMask specifies the client's subnet mask
3 routersOnSubnet a list of IP addresses for routers on the client's subnet
6 dns specifies a list of DNS servers available to the client
12 | hostName specifies the name of the client
50 | dhcpRequestediPaddr | request that a particular IP address be assigned by the server
51 | dhcplPaddrLeaseTime | a lease time for the IP address
53 | dhcpMessageType used to convey the type of the DHCP message
54 | dhcpServerldentifier the IP address of the selected server
55 | dhcpParamRequest request values for specified configuration parameters
61 | dhcpClientldentifier specify client unique identifier
255 | endOption marks the end of valid information

In the Option Field of 312 Bytes, the unused bytes are denoted with 0’'s padding.
<Table 3-34> is defined as Enumeration Data Type in “inet/dhcp.h” and shows most common

Option Codes that are used in DHCP Client Program.

Other codes that are not defined in <Table 3-34> are skipped from DHCP Client Program.

The operation of DHCP Client Program is displayed in EVB B/D’s main(). Refer to <Fig 3.3: EVB

B/D’s main()>

First, set up the MAC address to be used by DHCP Client at the initialization. MAC address is
unique address for all the devices in the network. MAC address is most basic address in
Network communication and necessary information to recognize DHCP Clients in DHCP Server.
For MAC Address of DHCP Client program, it sets up SRC_MAC_ADDR which is Global
Variable of DHCP Client using the MAC Address of EVB B/D. By calling init_dhcp_client() after
setup of SRC_MAC_ADDR, it can register two function to be called in case of collision of the IP

received from DHCP Server and in case of renewal the IP from DHCP Server.

When calling init_dhcp_client(), if each function is not specified, set DHCP_network() and

proc_ip_conflict() of DHCP Client Program are registered respectively.

EVB-B1 User’s Manual 71

init_dhcp_client()
param : s, ip_update, ip_conflict

Assign the Socket for DHCP Client
DHCPC_SOCK = s

ip_update != NULL

Assign the Default Handler for IP Update
dhcp_ip_update = set_DHCP_network

Assign the User Handler for IP Update
dhcp_ip_update = ip_update

Assign the User Handler for IP Conflict
dhcp_ip_update = proc_ip_conflict

Assign the Default Handler for IP Conflict
dhcp_ip_update = set_DHCP_network

END
<Fig 3.28: init_dhcp_client()>

When network information is renewal or IP collision occurs, register evb_soft_reset() to run auto
reset for EVB B/D.

Second, Network Information acquirement can be done through getlP_ DHCPS().

|
72 EVB-B1 User’s Manual

getlP_DHCPS()

Assign a random integer to DHCP_XID
DHCP_XID = 0x12345678

v

Initialize DHCP Client Variables
GET_SIP = 0x00000000
GET_GW_IP = 0x00000000
GET_SN_MASK = 0x00000000

Initialize W3100A
initW3100A()

]

Set W3100A's IP Address to 0.0.0.0
setIP(GET_SIP)

Set W3100A’s MAC Address
setMACAddr(SRC_MAC_ADDR)

Find a DHCP Server
send_DHCP_DISCOVER()

W3100A System Initialize
sysinit(0x55,0x55)

‘ dhcp_state = STATE_DHCP_DISCOVER ‘

v

Reset timeout value & retry count
reset_DHCP_time()

v

Set Timer for DHCP Client
set_timer(1s)

Y

‘ DHCP_Timeout = 0 ‘

’ ‘ Kill Timer for DHCP Client
—!

kill_timer()

Check dhcp_state .
RETURN Success dhcp_state = check_DHCP_state() RETURN Fail

<Fig 3.29: getlP_DHCPS()>

getlP_DHCP(), it initializes W3150 using setlP(),setMACAddr(),and etc. And then it
initializes ‘dhcp_state’ variable as DHCP Client program state to
‘STATE_DHCP_DISCOVER’. After the initialization, it calls send_DHCP_DISCOVER(to
transfer a DHCP DISCOVERY message to DHCP server.

After transmitting DISCOVERY DHCP message, it initializes timer variables which are the
leased time of network information received from DHCP Server by calling reset DHCP_time()
and uses ‘DHCP Timer’ for 1-sec interval using set timer(). After the initialization of
DHCP_Timeout with 0, it waits for DHCP Message to be received from DHCP Server, as long
as the ‘DHCP_WAIT_TIME' defines and, as many as it's defines at ‘MAX_DHCP_RETRY.’
While waiting for ‘DHCP_WAIT_TIME x MAX_DHCP_RETRY’ time it continuously checks if
dhcp_state is changed to STATE_ DHCP_LEASED through check_DHCP_state().

|
EVB-B1 User’s Manual 73

STATE_DHCP_LEASED state represents the network information is obtained and means that
getlIP_DHCP() is done successfully. If network information is not obtained from DHCP Server
during the waiting time for ‘DHCP_WAIT_TIME x MAX_DHCP_RETRY’ check_DHCP_state()
sets DHCP_Timeout to 1. When DHCP_Timeout is 1, getlP_DHCPS() returns failure after
releasing the DHCP Timer.

When it failed to obtain network information from DHCP server, EVB B/D sets network
configuration using default network information or previous obtained network information.

<Table 3-35> is a definition of State, Timeout , and Retry Count of DHCP Client.

<Table 3-35: DHCP Client State & Timeout Definition>

Define Description

#define STATE_DHCP_DISCOVER 1 DISCOVERY Transmission

#define STATE_DHCP_REQUEST 2 OFFER Receiving & REQUEST Transmission

#define STATE_DHCP_LEASED 3 ACK Receiving, Acquiring Network Information

#define STATE_DHCP_REREQUEST 4 | After obtaining Network Information, REQUEST

Retransmission

#define STATE_DHCP_RELEASE 5 RELEASE Transmission

#define MAX_DHCP_RETRY 3 Number of Same DHCP Message Transmission, 3
times
#define DHCP_WAIT_TIME 5 Waiting time for receiving DHCP Message, 5 sec.

At getlP_DHCP(),'DHCP_XID’ is variable to set up xid Field of DHCP message in <Fig 3.26:
DHCP Message Format>, it must be unique and maintained the same value until Lease Time of
network information is expired. DHCP_XID is fixed with ‘0x12345678' on here, but it's
recommended to use random value.

Be advised to set Source IP Address as ‘0.0.0.0." when initializing W3150 for communication
with DHCP server. You can use any IP address to set Source IP address of W3150 but using
‘0.0.0.0' is better because ‘0.0.0.0’ corresponds to Class A in IPv4 addressing and it's a Null IP
address that is not actually used. For this reason, there is no chance for collision with other
network.

In case of setting IP of W3150 as null IP address unicast packet of UDP cannot be received. So,
all packets must be transmitted in the form of broadcast packet. And, for DHCP server to
transmit UDP broadcast packet, note that Flag field MSB of DHCP message must be set 1.
Refer to <Fig 3.26: DHCP Message Format>.

<Table 3-36> is a part of code that sets up Flag field

|
74 EVB-B1 User’s Manual

<Table 3-36: DHCP Message Flag Field Setup>

#define DHCP_FLAGSBROADCAST 0x8000
PRIPMSG->flags = htons(DHCP_FLAGSBROADCAST);

Third, management of Network Information obtained from DHCP server can be performed by
check_DHCP_state().<Fig 3.30> shows DHCP message flow due to DHCP client state change
in the check_DHCP_state() process.

DHCP Client DHCP Server
DHCP_DISCOVER
STATE_DHCP_DISCOVER
Receive DHCP_DISCOVER
Timeout
DHCP_OFFER
STATE_DHCP_REQUEST DHCP_REQUEST
Receive J DHCP_REQUEST
Timeout
DHCP_NACK
STATE_DHCP_DISCOVER DHCP_DISCOVER
DHCP_OFFER
STATE_DHCP_REQUEST DHCP_REQUEST
DHCP_ACK
STATE_DHCP_LEASED
After the half of leased time T
DHCP_REQUEST
STATE_DHCP_REQUEST
DHCP_ACK
STATE_DHCP_LEASED

<Fig 3.30: DHCP Message Flow by DHCP Client State>

check_DHCP_state() checks if there is DHCP message from DHCP server, it receives and

analyze DHCP message. By types of analyzed DHCP message, if it's DHCP message that can

EVB-B1 User’s Manual 75

be receivable, it changes to next state after it changes DHCP Client State as DHCP Message

Flow of <Fig 3.30> indicates.

check_DHCP_state()

Declare & Initialize Local Variables
u_intlen
u_char type =0

len = select(s,SEL_RECV) ‘ ‘

Receive & Analyze
type = parseDHCPMSG()

— - Y Broadcast DHCP_REQUEST
—/pe==DHCP_OFFER— send_DHCP_REQUEST()
4
Check timeout dhcp_state =
check_DHCP_Timeout() STATE_DHCP_REQUEST
— . Y Reset timeout & retry_count | | Check IP Conflict
—ype==DHCP_ACK= reset_DHCP_time() check_leasedIP()

N
—fype==DHCP_NAK—

Y P Conflict 2

N
A4
Reset timeout & retry_count dhcp_state = Update the Network Information
reset_DHCP_time() STATE_DHCP_DISCOVER set_DHCP_network()

Check timeout END dhcp_state =
check_DHCP_Timeout() STATE_DHCP_LEASED

type =0
OLD_SIP = GET_SIP »>
DHCP_XID++

Broadcast DHCP_REQUEST
send_DHCP_REQUEST()

Reset timeout & retry_count dhcp_state =
reset_DHCP_time() STATE_DHCP_REREQUEST

Update the Network Information
set_DHCP_network()

Reset timeout & retry_count
reset_DHCP_time()

Reset timeout & retry_count
reset_DHCP_time()

STATEﬁDHC_PiDISCOVER STATE_| DHCP LEASED

Check tlmeout
check_DHCP_Timeout()

dhcp_state = ‘ ‘ dhcp_state = ‘

<Fig 3.31: check DHCP_state()>

check DHCP_state() processes correspondingly with DHCP client state through the series of

processes shown in <Fig 3.31>. If we take a look at DHCP_STATE LEASED state at

76 EVB-B1 User’s Manual

check DHCP_state(), the Lease Time received from DHCP server is finite, in case that half of
the Lease Time passed, it sends DHCP_REQEUST Message to DHCP Server and changes it
as DHCP_STATE_REREQUEST after it backs up the source IP. As it continuously transmits
DHCP_REQUEST to the server, network information is maintained.

parseDHCPMSG() check_DHCP_Timeout()
Declare & Initialize Local Variables <_“
etry_count < MAX_DHCP_RETRY
Y

u_char svr_addr[6];

u_short svr_port;

pRIPMSG = (u_char*) RX_BUF
u_intlen, i=1;

u_char* p, *e;

u_char type, opt_len;

Reset timeout & retry_count
reset_ DHCP_time()

DHCP_Timeout = 1

dhep_time=0 ‘ ‘Broadcast DHCP_DISCOVER‘ ‘

Receive a DHCP Message
recvfrom(&pRIPMSG,svr_addr,&svr_port)

vr_port== DHCP_SERVER_PORT—
Y
——PRIPMSG->chaddr != SRC_MAC_ADDR—
N

DHCP_SIP = Pripmsg->siaddr
GET_SIP = Pripmsg->yiaddr

v

type =0
p = &(Pripmsg->op)
p += 240

e =p + (len-240)

v v
@ N RETURN 0

next_time=my_time+DHCP_WAIT_TIME
retry_count++

send_DHCP_DISCOVER()

dhcp_state =
STATE_DHCP_DISCOVER

send_DHCP_DISCOVER()

Broadcast DHCP_DISCOVER‘ (END

Broadcast DHCP_REQUEST
send_DHCP_REQUEST()

send_DHCP_REQUEST()

Broadcast DHCP_REQUEST‘ ‘

Y
— v
RETURN type
N
s ®
N

opt_len = *p++ }—»{ type = *p++ ‘
Ieasesjnlqza:sf(a—i_rlgig*)p
. memis;/(DD'-ljl((:;’__SSII';,pA)

N

Set GET_SN_MASK
memcpy(GET_SN_MASK,p,4)

Set GET_GW_IP
memcpy(GET_GW_IP,p,4)

Skip Other DNS
p+=4
opt_len -=4

Set GET_DNS_IP
memcpy(GET_DNS_IP,p,4)

<Fig 3.32: parse. DHCPMSG() & check_ DHCP_Timeout()>

parase_ DHCPMSG() receives DHCP message from DHCP server, categorizes Type of DHCP

EVB-B1 User’s Manual 77

Message, and saves network information. When performing check DHCP_state(),
check_ DHCP_Timeout() is called in case that DHCP message is not received during the
DHCP_WAIT_TIME or received DHCP message from DHCP server is not expected, to
retransmit DHCP message to DHCP server. If the retransmission of DHCP message is repeated
as much as MAX_DHCP_RETRY, it transmits DHCP_DISCOVER message to DHCP server

after it initializes all the variables to start the connection of DHCP server and DHCP message.

<Table 3-37: Reference Fucntions in DHCP Client>

Function Name Description Location

void init_dhcp_client(SOCKET s, Initializes DHCP Client inet/dhcp.c
void (*ip_update)(void),
void (*ip_conflict)(void))

u_int getlP_DHCPS(void) Obtains network information from | inet/dhcp.c

the server

void check_DHCP_state(SOCKET s) | Manages network information | inet/dhcp.c
obtained from DHCP Server

void set DHCP_network(void) Applies network information | inet/dhcp.c

obtained from DHCP server to

W3150.
char parseDHCPMSG Analyzes and processes DHCP | inet/dhcp.c
(SOCKET s, u_int length) message
void check_DHCP_Timeout(void) Retransmits the DHCP message | inet/dhcp.c

when DHCP connection Timeout

occurs

char check_leasedIP(void) Check if the IP obtained from DHCP | inet/dhcp.c
server is faced with collision.

void reset_ DHCP_time(void) Initializes DHCP Timer related | inet/dhcp.c
variables.

void DHCP_timer_handler(void) DHCP Timer Handler inet/dhcp.c

void send_DHCP_DISCOVER Transmits DHCP_DISCOVER | inet/dhcp.c

(SOCKET s) message to DHCP server.

void send_DHCP_REQUEST Transmits DHCP_REQUEST | inet/dhcp.c

(SOCKET s) message to DHCP server.

void Transmits inet/dhcp.c

send_DHCP_RELEASE_DECLINE DHCP_DISCOVER/DHCP_DECLIN
(SOCKET s,char msgtype) E message to DHCP server

78 EVB-B1 User’s Manual

u_int init_dhcpc_ch(SOCKET s)

Creates DHCP client socket.

inet/dhcp.c

int select(SOCKET s, u_char func)

Informs status of socket, size of
data transmittable, and received

data

iinChip/socket.c

char socket(SOCKET s,
u_char protocol, u_int port, u_char

flag)

Creates sockets as TCP/UDP/IP

iinChip/socket.c

int sendto(SOCKET s, const u_char *
buf, u_int len, u_char * addr, u_int

port)

Transmits data through specific port

of specific Destination

iinChip/socket.c

int recvfrom(SOCKET s, u_char *
buf,

u_int len, u_char * addr, u_int * port)

Receives data through any port of

any destination.

iinChip/socket.c

void close(SOCKET s)

Closes the Socket

iinChip/socket.c

3.2.5.6 DNS Client

Let's take a brief look at the DNS(Domain Name System) before DNS Client setup is introduced.

DNS is a system that transforms Internet Domain Name to Internet IP Address or Internet IP

Address to Internet Domain Name. DNS is composed of Name Server that contains mapping table

between IP Address and Domain Name, and DNS resolver that receives query results by

transmitting query to Name Server.

DNS resolver queries IP address or Domain Name to be transformed to local Name Server.

Local Name Server which received the Query searches its DB and answers back to the

Resolver. If Resolver cannot find the information it looks up, Local Name Server sends the

received query to Name Server at higher layer and the received answer can be sent to the

Resolver.

Query >

RESOLVER

(CLIENT)

Local
Name Server

<

53 Port

< Answer

Query

Y
///%;

Answer >

<Fig 3.33: Domain Name System Structure & DNS Message Flow>

EVB-B1 User’s Manual

79

As seen in <Fig 3.33>, DNS Query and DNS Answer Message transmittable between DNS

Resolver and Name Server are composed of 5 Sections in <Fig 3.34>.

12 Bytes I Header

Variable Length I Question
A

Answer

Resource Records(RRs) '
Variable Length Authority

Additional

<Fig 3.34: DNS Message Format>

Header Section has fixed 12 Bytes length and the other 4 sections have variable lengths.
Answer, Authority, Additional Section other than Header and Question Section are called

Resource Records(RRs). Each of Header, Question, and RRs has different format.

0 7 8 15

1D

QR Opcode (4bit) AA | TC | RD | RA Z (3bit) RCODE (4bit)

QDCOUNT
12 Bytes

ANCOUNT

NSCOUNT

ARCOUNT v

<Fig 3.35: Header Section Format>

|
80 EVB-B1 User’s Manual

0 15
Variable
QNAME Length
QTYPE ¢ 2 Bytes
QCLASS 2 Bytes

<Fig 3.36: Question Section Format>

0 15
NAME Variable
Length
TYPE ¢ 2 Byte
CLASS ¢ 2 Byte
TTL I 4 Byte
RDLENGTH # 2 Byte
Variable
RDDATA Length

<Fig 3.37: Recode Resources Format>

Header Section of DNS Message holds Type of Message, DNS Query Type, and count information
on variable length section.

In <Fig 3.35: Header Section Format>, QR Field gets 0 when DNS Message is a request from
Resolver to Name Server and gets 1 when it's from Name Server to Resolver. Opcode Field gets 0
when it queries Domain Name as IP Address and gets 2 when it queries Name Server status.
QDCOUNT, ANCOUNT, NSCOUNT, and ARCOUNT Field, count information for variable length,
represent Block Count that is composed of Question, Answer, Authority, and Additional Section.
Question Section is made of Block of <Fig 3.36: Question Section Format> Recode
Resources(RRs) which are Format. Answer, Authority, and Additional Sections are composed of
Block of <Fig 3.37>.

For example, if QDCOUNT is 1, ANCOUNT is 10, NSCOUNT is 10, and ARCOUNT is 10 then

Question Section is composed of Block 1 of <Fig 3.36: Question Section Format> and Answer,

|
EVB-B1 User’s Manual 81

Authority, and Additional Section are composed of 10 Blocks in <Fig 3.37>.

NAME of <Fig 3.37>, QNAME Filed of <Fig 3.36> and RDDATA Field also get variable lengths.
QNAME and NAME are variable length fields which are composed of <Fig 3.40> Format and they
process each field. RDDATA, variable length field, processes using the data length of RDLENGTH
Field.

For further details, refer to RFC1034 and RFC1035
DNS Message is operated by Data Type defined in <Table 3-38>. Refer to “inet/dns.h”

<Table 3-38: DNS Message Data Type>

/* Header Section */
typedef struct _DHDR

u_short id; /* Identification */

u_char flago;

u_char flagl;

u_short qgdcount; /* Question count */

u_short ancount; [* Answer count */

u_short nscount; /* Authority (name server) count */
u_char arcount; /* Additional record count */

JDHDR;

/* Question Section */
typedef struct _QUESTION

Il char* gname; /I Variable length data
u_int qtype;
u_int qclass;

}DQST;

/* Resource Records */
typedef struct _ RESOURCE_RECORD

{
1l char* _hame; /I Variable length data
u_int _type;
u_int _class;
u_long _ttl;
u_int _rdlen;
1! char* _rdata; /I Variable length data
1DRR;

DNS Resolver works based on gethostbyaddr() and gethostbyname(). gethostbyaddr() transforms
Internet IP Address to Internet Domain Name and gethostbyname() transforms Internet Domain
Name to Internet IP Address. gethostbyaddr() and gethostbyname() test the setup of DNS Name
Server IP Address and search Free Channel of W3150 needed for connection with DNS Name
Server. If Free Channel of W3150 exists, gethostbyaddr() and gethostbyname() call dns_query() with
‘BYNAME' or ‘BYIP’ as the elements.

|
82 EVB-B1 User’s Manual

For examples of gethostbyaddr() and gethostbyname(), refer to Chapter 3.2.4.3 Ping Request

Program.

Actual connection with DNS Name Server is performed through dns_query(), and

gethostbyaddr() and gethostbyname() are reporting only the result of dns_query().

<Table 3-39: Query Type Definition at dns_query()>

typedef enum _QUERYDATA{BYNAME,BYIP}QUERYDATA; /* Query type */

gethostbyname() gethostbyaddr()
Declare Local Variables Declare Local Variables
SOCKET s SOCKET s
Get the network information of EVB Get the network information of EVB
get_netconf(&NetConf) get_netconf(&NetConf)

DNS Server IP
Addess is not
Configued

Find a Free channel of W3100A RETURN 0 Find a Free channel of W3100A
getSocket(SOCK_CLOSED) getSocket(SOCK_CLOSED)
N Not found a Free
Socket

ONS Server IP
Addess is not
Configued

RETURN 0
Not found a
Free Socket

Y
Communicate with the DNS Server Communicate with the DNS Server
dns_query(s,&hostip,BYNAME) dns_query(s, &hostip, BYIP)

Fail to
communicate
ith the Server

RETURN 0

Fail to
communicate
with the Server

Y
RETURN 0 RETURN 1

<Fig 3.38: gethostbyaddr() & gethostbyname()>

Y
RETURN 1

dns_query() initializes the buffer that is needed for DNS inter-working and creates QNAME of
Question Section based on Query Type ‘BYNAME', and ‘BYIP.’ If the Query Type is ‘BYNAME,’
that is, when querying the Domain Name with IP Address, Domain Name can be used as
QNAME without transformation.

When Query Type is ‘BYIP;" that is, when querying the Domain Name with IP Address, change
IP Address to IP Address String and QNAME is used after adding “in-addr.arpa” to the changed
IP Address String. After the creation of QNAME, UDP Socket is created for DNS inter-working
and DNS Request Message is created by calling dns_make_query(). If DNS Request Message

|
EVB-B1 User’s Manual 83

is created successfully DNS Request Message is sent to DNS Name Server through UDP
Socket. After sending DNS Request Message it receives DNS Response Message or waits until
the waiting time is expired.

If DNS Response Message is received from DNS Name Server during the waiting time it
analyzes received DNS Response Message using dns_parse_response().dns_query() returns
IP Address or Domain Name depending on Query Type.

<Fig 3.39> is dns_query()’s process map

|
84 EVB-B1 User’s Manual

dns_query()

Declare & Initialize Local Variables

int len

u_int port;

u_char response_received = 0

char* gname;

dns_buf = (u_char*) TX_BUF

get_domain_name = dns_buf + MAX_DNSMSG_SIZE
query_data = querydata

querydata == BYNAME—

gname = domain_name

Convert domain_name into Dotted Notation Format

gname += MAX_DNSMSG_SIZE
strcpy(qname,inet_ntoa(*domain_ip))
strcat(gname,".in-addr.arpa”)

Create a UDP Socket for DNS

A

socket(SOCK_DGRAM)

N Create OK?

Y

Make a Query with gname
len =dns_makequery(OPQUERY,gname)

e

Y

Send the query to the DNS Server
sendto(dns_buf,dnsip,IPPORT_DOMAIN)

elapse-->0

Wait 10ms
wait_10ms(1)

Close the socket
close(s)

reponse_received ==

Analyze the answer
dns_parse_reponse()

Receive a answer from the DNS Server
recvfrom(dns_buf)

—{ reponse_received = 1 }4—‘

*domain_ip = get_domain_ip

querydata == BYNA Y
N

Copy get_domain_name to domain_name

strcpy(domain_name, get_domain_name)

RETURN 1 -

<Fig 3.39: dns_query()>

EVB-B1 User’s Manual

85

< dns_make_query() >

v

Declare & Initialize Local Variables

char* query = dns_buf;
u_char* domain_tok;
u_int domain_len;
u_int qtype;

u_int qclass;

query_data == BYNAME—

‘ qtype = TYPE_PTR ‘

qtype = TYPE_A

Header Section ‘qclass = CLASS_IN ‘4—

v

((u_int)query) = dns_id
query +=2

*query++ = MAKE_FLAGO()
*query++ = MAKE_FLAG1() . .
*((u_int)query) = 1 Question Section
query = dns_buf + DHDR_SIZE

v

Find the location of . In gname

\d

domain_tok = strchr(gname,??

v Y

RETURN 0

*query++ = domain_len
memcpy(query,gname,doman_len)
gname += domain_len+1

*query += domain_len

domain_tok == NULL

*query++ =\0

*((u_int)query) = qtype
query +=2

*((u_int¥)query) = qclass
query +=2

<RETURN Query Size>

<Fig 3.40: dns_make_query()>

86 EVB-B1 User’s Manual

dns_make_query() creates DNS Request message to be sent to DNS Name Server. Since DNS
Request Message can query only with Header, Question Section, RRs Sections is not needed
to be created. If you examine the header section creation at dns_make_query(), first, it sets ID
Field values as any value in DNS Message inter-working. On here, ID is set with 0x1122, and
for further inter-working, the value is incremented by 1. QR, Opcode, AA, TC, RD Field are set
as QR_QUERY, OP_QUERY/OP_IQUERY, 0, 0, 1 respectively through MAKE_FLAGO(), and
RA, Z, RCODE Field are set as 0, 0, 0 respectively through MAKE_FLAGL1().

<Table 3-40: Constants and MACRO used in Header Section>

#define QR_QUERY
#define QR_RESPONSE

#define OP_QUERY
#define OP_IQUREY
#define OP_STATUS

/* a standard query (QUERY) */
[* an inverse query (IQUERY) */
[*a server status request (STATUS)*/

N P O|F, O

#define MAKE_FLAGO(qr, op, aa, tc, rd)
(((gr & 0x01) << 7) + ((op & OxOF) << 3) + ((aa & 0x01) << 2) + ((tc & 0x01) << 1) + (rd & Ox01))

#define MAKE_FLAG1(ra, z, rcode)
(((ra & 0x01) << 7) + ((z & 0x07) << 4) + (rcode & OxOF))

Since the count fields, QDCOUNT, ANCOUNT, NSCOUNT, and ARCOUNT, have only one
guestion each is set as 1, 0, 0, O respectively.

Let's look at Question Section. QNAME Field is Field that sets IP Address String. Domain Name
and IP Address String are composed of Label length of 1 byte and Label of MAX 63 Byte. The
end of QNAME is always set with O to find out the variable length of QNAME. <Fig 3.41> is

actual example of transformation of Domain Name “www.wiznet.co.kr” in QNAME field.

»

00| w|w[w[oee|w[i]z[n[e]t]oe|c[o]oe|k]r o]

Label Length Label Zero Terminated

<Fig 3.41: Example of QNAME Field transformation of Question Section >

|
EVB-B1 User’s Manual 87

QTYPE Field of Question Section is set ‘TYPE_PTR’ when is holds Domain Name as QNAME.
When it's IP Address it's set as ‘TYPE_A and QCLASS Field is set as ‘CLASS _IN’ since it is
included in Internet.

Table 3-41 is definition of constants that are used in QTYPE & QCLASS Fields.

<Table 3-41 : Constants Defintion at QTYPE & QCLASS Field>

Definition Description
#define TYPE_A 1 The ARPA Internet
#define TYPE_NS 2 an authoritative name server
#define TYPE_MD 3 a mail destination (Obsolete - use MX)
#define TYPE_MF 4 a mail forwarder (Obsolete - use MX)
#define TYPE_CNAME 5 the canonical name for an alias
#define TYPE_SOA 6 marks the start of a zone of authority
#define TYPE_MB 7 a mailbox domain name
#define TYPE_MG 8 a mail group member
#define TYPE_MR 9 a mail rename domain name
#define TYPE_NULL 10 a null RR
#define TYPE_WKS 11 a well known service description
#define TYPE_PTR 12 a domain name pointer
#define TYPE_HINFO 13 host information
#define TYPE_MINFO 14 mailbox or mail list information
#define TYPE_MX 15 mail exchange
#define TYPE_TXT 16 text strings
#define QTYPE_AXFR 252 Arequest for a transfer of an entire zone
#define QTYPE_MAILB 253 A request for mailbox-related records
#define QTYPE_MAILA 254 Arequest for mail agent RRs
#define QTYPE_TYPE_ALL 255 Arequest for all records
#define CLASS _IN 1 Internet
#define CLASS_CS 2 CSNET class
#define CLASS_CH 3 CHAOS class
#define CLASS_HS 4 Hesiod [Dyer 87]
#define QCLASS ANY 255 Any class

|
88 EVB-B1 User’s Manual

dns_parse_response()

Declare & Initialize Local Variables

u_inti;
DHDR dhdr;
char* cur_ptr = dns_buf;

v

‘ dhdr.id = *((u_int*)cur_ptr) ‘

dns_id++

cur_ptr +=2

dhdr.flag0 = *cur_ptr++
dhdr.flagl = *cur_ptr++

Display the Error
of Response

dhdr.qdcount = *((u_int*)cur_ptr)

dhdr.ancount = *((u_int*)cur_ptr+2)
dhdr.nscount = *((u_int*)cur_ptr+4)
dhdr.arcount = *((u_int*)cur_ptr+6)
cur_ptr += 8;

Parse the Question Section
dns_parse_question(cur_ptr)

Parse the Answer Section
dns_parse_answer(cur_ptr)

RETURN 1

<Fig 3.42: dns_parse_response()>

EVB-B1 User’s Manual 89

dns_parse_response() of <Fig 3.42> analyzes Response Message received by DNS Name
Server. dns_parse_response() checks if it's same as Request Message ID that was sent to DNS
Name Server and it also checks if the message received is a Response Message by checking
QR Field of Header Section. If the received message is Response from DNS Name Server the
success of change is decided by checking the RCODE Field value of Header Section.

<Table 3-42> is definition of constants that are used in RCODE Field.

<Table 3-42 : Constant Definition at Header Section’s RCODE Field>

Definition Description

#define RC_NO_ERROR 0 | No error condition

#define RC_FORMAT_ERROR 1 | Format error - The name server was unable to interpret
the query

#define RC_SERVER_FAIL 2 | Server failure - The name server was unable to process

this query due to a problem with the name server

#define RC_NAME_ERROR 3 | Name Error - Meaningful only for responses from an
authoritative name server, this code signifies that the

domain name referenced in the query does not exist.

#define RC_NOT_IMPL 4 Not Implemented - The name server does not support
the requested kind of query.

#define RC_REFUSED 5 Refused - The name server refuses to perform the

specified operation for policy reasons.

If the RCODE is RC_NO_ERROR then variable length sections such as Question, Answer,
Authority, and Additional Section are analyzed. Since the necessary information is set in Answer
Section, in this case, it's analyzed and processed up to Answer Section, and other section
analysis and process are not performed. If you need information on Authority and Addition

Section you can get them easily on your own.

Question Section is processed as many as QDCOUNT of Header Section by calling
dns_parse_question(). Answer Section is processed as many as ANCOUNT of Header Section

by calling dns_parse_question().

|
90 EVB-B1 User’s Manual

dns_parse_question() dns_parse_answer()

Declare & Initialize Local Variables Declare & Initialize Local Variables
u_int len; int len, type;
char name[MAX_QNAME_LEN]; char gname[MAX_QNAME_LEN];
u_long tip;
Extract & convert the QNAME field In Question Section %
len = parse_name(name) Extract & convert the NAME field In Answer Section

len = parse_name(gname)

Y RETURN #
NULL @ Y RETURN
NULL

N
N

cp +=len -
cg =4 type = *((u_int*)cp)
+ cp+=2

RETURN cp
Extract the IP Address in cp

and then assign it to tip
N —query_data == BYNAME—
get_domain_ip = tip

Extract & convert the RDDATA field In Answer Section
len = parse_name(qname)

Skip CLASS, TTL, RDLENGTH
cp+=8

((u_char)&tip) = *cp++

*(((u_char®)&tip) + 1) = *cp++;
*(((u_char®)&tip) + 2) = *cp++;
*(((u_char®)&tip) + 3) = *cp++;

RETURN
cp

RETURN
NULL

cp +=len

len = *cp++

RETURN cp +=len
cp len = *cp++

cp +=len

R

Copy gname to get_domain_name len = parse_name(gname)

strcpy(get_domain_name,gname)

RETURN

len = parse_name(qname) N @ Y RETURN
parse_ q P NULL
A
cp+=len |« N len == Y

<Fig 3.43: dns_parse_question() & dns_parse_answer()>

dns_parse_question() analyses and processes Question Section. There are no information that
actually used in the Question Section of DNS Request Message but it must be processed to get
the starting position of Answer Section. Since QNAME Field of Question Section gets variable
length, parse_name() processes QNAME Field to process the variable length processes and

QTYPE, and QCLASS Field are skipped.

|
EVB-B1 User’s Manual 91

dns_parse_answer() analyzes and processes Answer Section. Answer Section is a section

where transformation actually takes effects and it performs appropriate process to TYPE Field of
Answer Section.

TYPE of Answer Section has one of values from <Table 3-41 : Constants Defintion at QTYPE &
QCLASS Filed> and the value comes from either TYPE_A or TYPE_PTR. In case that
the Domain Name is changed to IP Address, it can get the changed IP Address from
TYPE_A and if the IP Address is changed to Domain Name, Domain Name can be
obtained from TYPE_PTR. Changed Domain Name or IP Address are also processed

and extracted by parse_name().

Declare & Initialize Local Variables

u_int slen;

int clen =0;

int indirect = 0;
int nseg = 0;

slen = *cp++ |-

clen++

<direct ==0=
N
- en & 0xC0==0xCO0 ol
Y

‘ cp = &dns_buf[(slen & 0x3F) << 8)+*cp] ‘

clen +=slen

‘ gname_maxlen -= slen +1 ‘4—

gname_maxlen <0— Y Not Enough RETURN 0
Memory
N

*gname++ = *cp++

*gname++ = .

nseg++

92 EVB-B1 User’s Manual

<Fig 3.44: parse_name()>

parse_name() processes QNAME Field of Question Section or NAME, RDDATA Field of RRs
Section. QNAME, NAME, RDDATA Field are mostly composed as in <Fig 3.41: Example of
QNAME Field transformation of Question Section >. However, it can be compressed to reduce
DNS Message Size. Compression Scheme is expressed in 2 Byte. If the first byte, that is, the
case where the upper 2 Bits are '11,’ it means the Label is compressed. It has the offset that is
composed of 157 Byte excluding upper 2 bits and 2" Byte

This offset is Offset of DNS Message and means the actual value of Label is located by the
offset from the starting point of DNS message. When Compress Scheme tries to reuse Domain
Name that was already used in DNS Message, relevant Domain Name sets the offset that is
located in DNS Message as Indirect so that it can reduce the size of DNS Message. <Fig 3.45>

is an example of Compress Scheme of DNS Message and its application.

|
EVB-B1 User’s Manual 93

0 1 2 7 8 15
‘1‘1‘ Offset ‘

19

—p» 20
22

24

» 26
28

30

> O DN W
ol |>|—|—| T

38
40 3 F DNS

42 (@) (0] Message
44 1| 1 | 20

62
641\1\ 26

90
92 0

<Fig 3.45: DNS Message Compression Scheme>

The example of Compression Scheme of <Fig 3.45> shows DNS Message in case of
“F.ISI.LARPA”, “FOO.F.ISI.ARPA", “ARPA”, and ROOT. “F.ISI.ARPA” is processed in the format of
<Fig 3.41: Example of QNAME Field transformation of Question Section > with Offset 20 of

DNS Message without compression.

In “FOO.F.ISI.LARPA,” since the rest except for “FOQO” is same as Name which is previously
processed, “FOQ” is processed with <Fig 3.41: Example of QNAME Field transformation of
Question Section > Format without compression and the rest of names is processed by Offset

26. ROOT is the highest Domain and it's processed with Label Length Field of 0.

|
94 EVB-B1 User’s Manual

parse_name(), before analysis of Name, checks if upper 2 bits of Label Length Byte are 11, if it's
‘11’ the related Label analyzes the Label at the offset of DNS Message where the Label is

located. If it's no ‘11’ then the Label is analyzed and processed like as <Fig 3.41: Example of
QNAME Field transformation of Question Section >.

EVB-B1 User’s Manual 95

<Table 3-42 : Reference Functions in DNS Client>

Function Name Description Location

int gethostbyaddr Changes IP Address to Domain Name | util/sockutil.c

(u_long ipaddr,char* domain)

u_long gethostbyname Changes Domain Name to IP Address | util/sockutil.c

(char* hostname)

u_char dns_query DNS Message Processing inet/dns.c
(SOCKET s, u_long dnsip,
u_char * domain_name,
u_long* domain_ip,
QUERYDATA querydata,

u_int elapse)

int dns_make_query Creates DNS Request Message inet/dns.c

(u_char op,char * gname)

Int dns_parse_reponse(void) Analyzes DNS Response Message inet/dns.c
u_char * dns_parse_question Analyzes Question Section of DNS | inet/dns.c
(u_char * cp) Response Message

u_char * dns_parse_answer Answer Section of DNS Response | inet/dns.c
(u_char *cp) Message

int parse_name(char* cp,char* | Analyzes NAME Field of Question, | inet/dns.c

gname, u_int gname_maxlen) RRs Section

int select Informs status of socket, size of data | iinChip/socket.c
(SOCKET s, u_char func) transmittable, and received data

char socket(SOCKET s, u_char | Creates sockets as TCP/UDP/IP iinChip/socket.c

protocol, u_int port, u_char flag)

int sendto(SOCKET s, Transmits data through specific port of | iinChip/socket.c
const u_char * buf, u_int len, | specific Destination

u_char * addr, u_int port)

int recvfrom(SOCKET s, Receives data through any port of any | iinChip/socket.c
u_char * buf, u_int len, u_char * | destination.

addr, u_int * port)

void close(SOCKET s) Closes the related Socket iinChip/socket.c

|
96 EVB-B1 User’s Manual

4 Hardware Designer’s Guide

|
EVB-B1 User’s Manual 97

4.1 Block Diagram

|
98 EVB-B1 User’s Manual

MB-EVB-X1

RS232 2 Port

Serial Intertace

P Serial Interface

\/

DIN 96Pin

Expanded Board Interface

) 12C Intertace

Port Intertace

3.3V Power On
System Reset

Reset Button Input

Low Active RESET

High Active RESET_
>

Low Active mmmma—

e

PM-A1
Processor Module

System Controler

PAL

Chip Select Generator

DCi12v uT

Power Regulator

Port Intertace

12C Intertace

Serial Interface

CS_W3150A

PAL_OUT4:0)

DC3.3V

Awmnm Bus[7:0 '

LCD_E)

 ——— .

LCD

Information Displayer

Address Bus Er
Awmnm Bus Ho'

CS_RAM
—_——

DCsV '

SRAM

Data Memory Area

Low Active RES ma_

Address Bus E!
Awmnm Bus Ho'

CS_W3150 >

DC3.3V '

NM70108B

Network Intertace

<Fig 4.1: EVB B/D Block Diagram>

99

EVB-B1 User’s Manual

4.2 Block Description

EVB B/D is composed of MB-EVB-X1(EVB Base Board) and PM-A1(AVR MODULE).

Following 9 blocks are components of EVB B/D.
- PM-Al
- NM7010B
- LCD
- PAL
- SRAM
- RS232 Port
- Expanded Board Interface
- Power Regulator

- 3.3V Power On System Reset

42.1. PM-Al

PM-A1(AVR MODULE) is composed of Atmegal28-16Al Processor, 74HC573 for address latch,
16MHz external crystal and header for interfacing to Base board(JP4,JP5), and ISP(JP3) &
JTAG(JP1) Interface.

50.00mm |
[/
S
o
p2
_|
=
- N
o @ S
== Zc =
T n — g
N @
| 3
o
>
O ~
b3
C
Qs
-~
w
—
o
~ Y

<Fig 4.2: PM-A1 MODULE Dimension>

For easy development using EVB Board, all the port pin except for /ALE(PG2) are connected to

|
100 EVB-B1 User’s Manual

MB-EVB-X1 through module Interface(JP4,JP5). Pin description of Interface is shown in <Table
4-1: PM-A1 MODULE Pin Description>.

<Table 4-1: PM-A1 MODULE Pin Description>

PM-A1

MODULE Pin # Pin Name Dir. Description

Header #

JP4 25 DO(PAO) /0 | Databus[0:7] or PA[0:7]
32 D7(PA7)

JP5 26 PBO I/O PBI[0:7]
33 PB7

JP4 3 A0 I/O | Address bus[0:7]
10 A7

JP4 11 A8(PCO) /0 | Address bus[8:15] / PC[0:7]
18 A15(PC7)

JP5 42 PDO/SCL /0 | PD[0:7]

JP5 43 PD1/SDA

JP4 47 PD2/RXD1

JP4 45 PD3/TXD1

JP5 34 PD4

JP5 35 PD5

JP5 36 PD6

JP5 37 PD7

JP4 48 RXDO /O | RXDO is connected with PEO

JP4 46 PE1/TXDO through 1K resistance.

JP5 36 PE2 PE[1:7]

JP5 44 PE3

JP5 23 PE4/W3150_IRQ

JP5 46 PE5

JP5 6 PE6

JP5 8 PE7

JP5 13 PFO /0 | PF[0:7]

EVB-B1 User’s Manual

101

20 PF7
JP4 41 /WR(PGO) /0 | PG[0:4] without ALE(PG2)
JP4 42 IRD(PG1)
JP5 40 PG3
JP5 41 PG4
JP5 4 CPU_RESET I Reset Signal Input process generated
by EVB B/D's Reset Switch(SW3).
Depending on shunt location
connected to baseboard JP5, ‘High
Active Reset’ or ‘Low Active Reset’ is
obtained by selection.
EVB B/D makes No. 2 and No. 3 pin
of JP5 connect to SHUN.
JP5 1,2 3.3V | 3.3V Power Input. Not Used.
JP4 1,2 5V | 5V Power Input
JP5 10,12,21, GND Signal Ground
JP5 22,4547,
JP5 48,49,50
JP4 23,24,49,50
JP5 3,5,7,9,11, RESO RESERVED LINE
JP4 19,20,21,22 | ~
33,34,35,36, | RES18
37,38,39,40,
43,44
JP5 24 ICS_I2CHIP W3150 CS
25 /ICS_RAM External RAM CS
39 LCD_E LCDCS

AVR ISP (JP3) Pin Mapping

102

EVB-B1 User’s Manual

o | @ 5v
ano | @ @ ono
CPURESET | @ @ | GND
sck | @ @| cno
ol (@ @ cno
SIGNAL Pin Number I/O Description
oV 2 - Power is delivered to the AVRISP
GND 3,4,6,8,10 - Ground
PDO 1 Input Commands and data from AVRISP to EVB-B1
PDI 9 Output | Data from EVB-B1 to AVRISP
SCK 7 Input Serial Clock, Controlled by AVRISP
CPU_RESET 5 Input Reset. Controlled by AVRISP

EVB-B1 User’s Manual 103

4.2.2. NM7010B MODULE

NM7010B is a network module that is composed of W3150(TCP/IP hardwired chip),
RTL8201BL(Ethernet PHY), and MAG-JACK(RJ45 with X’FMR).

TCP/IP,MAC protocol layer : W3150
Physical layer : Ethernet PHY
Connector : MAG-JACK

For details on NM7010B MODULE, refer to “NM7010B Datasheet Vx.x.pdf”

4.2.3. LCD

LCD is used for debugging and system status display.
LCD uses CM16022AGRNNA-D1 of Data Image Corporation.

Pin Description of LCD Interface (JP6) is as follows.

<Table 4-2: LCD PIN Description>

EVB B/D PIN NAME/ -
PIN# D EN AV DIR. Description
1 GND/VSS Signal Ground
2 5V/VDD I LCD Power Supply
3 VO/VO I Voltage for LCD drive
4 Al/RS I Data/Instruction register select
5 AO/RW | Read/Write
6 LDC_E/E I Enable signal,start data read/write
7 D0/DBO I/O | Data Bus Line
14 D7/DB7
15 NC1/LED A 0] LED Anode, power supply+
16 NC2/LED K (6] LED Cathode,ground 0V

It uses Minimum 1.5V and Maximum 13.5V of VDD-VO at Specification Document of
CM16022AGRNNA-D1. To fit the data, R3(5V Pull Up 4.7K) and R4(Gnd Pull Down 820R) are
used and, in real application, LCD Display became clear when R3 was removed. For details on
CM16022AGRNNA-D1, refer to “CM16022AGRNNA-D1 Specifications” document.

104 EVB-B1 User’s Manual

4.2.4. PAL

PAL is used to make enable signal of various chip or module that are used for EVB B/D. The
PAL element that is used in the product is ATF16V8B-15PL from ATMEL co. It uses 10 input
pins and 8 I/O Pins.

It makes Chip Select or Enable Signal about SRAM(/CS_RAM), LCD(LCD_E), and
W3150(/CS_IINCHIP). The output, PAL_OUT_0~PAL_OUT 4, are set aside for expansion

through Expanded Interface.

4.2.5. SRAM

SRAM, with the size of 32Kbytes, is used as external data memory of Atmegal28.

4.2.6. RS232 Port

It's a interface for Dual Serial USARTSs that is supported by Atmegal28.
EVB B/D uses 9Pin DSUB male Type(P1,P2) connector.

4.2.7. Expanded Board Interface

Expanded Board Interface is designed to be developed easily using EVB B/D. Most of the port
pin of Atmegal28, output sinal of PAL (PAL_OUT_0~PAL_OUT _4), power and many reserved
pin are connected to Expanded Board Interface.

The Signals of AVR MODULE that are not connected to Expanded Board Interface are 7
RXD1(PD2), TXD1(PD3), RXDO(PEO), TXDO(PE1), LEDO(PG3), LED1(PG4),
/I2CHIP_IRQ(PEA4).

<Table 4-3: Expanded Board Interface Pin Description>

Pin # Pin Name Dir. Description

Bus Interface

66,34,67,35, | A0, Al, A2, A3, O Parallel Address Bus[0:15]
68,36,69,37, | A4, A5, A6, A7,
70,38,71,39, | A8, A9, A10,A11
72,40,73,41 Al2,A13,A14,A15

77,45,78,46 DO, D1, D2, D3, /O Parallel Data Bus[0:7]
79,47,80,48 D4, D5, D6, D7
53 /IRD @] Parallel Bus Read Strobe

EVB-B1 User’s Manual 105

86 /WR Parallel Bus Write Strobe
25 PAL OUT 0O @] Reserved Parallel Bus Chip Select / Enable
29 PAL_OUT 4

18 SDA/PDO I/0 I2C Bus Data Line/ Port DO
19 SCL/PD1 @] I2C Bus Clock Line/Port D1
Atmegal28 Port Interface

20 PBO 110 Port B[0:7]

21 PB1

56 PB2

57 PB3

58 PB4

59 PB5

60 PB6

61 PB7

92 PD4 /0 Port D[4:7]

93 PD5

89 PD6

90 PD7

91 PE2 /0 Port E[2:3],

22 PE3 Port E[5:7]

23 PES

3 PE6

5 PE7

1,2,4,6, RESO~RES3 Not Available

7,75,42,76 RES4~RES7

43,81,49,83, RES8~RES11

50,84,51,85, RES12~RES15

52,54,87 RES16~RES18

Power Interface

31,32 5V @] 5V Power Supply

63,64 3.3V @] 3.3V Power Supply

95,96 12v o) 12V Power Supply
8,9,24,30,44, | GND Ground

55,62,65,72, No. 8 Pin and GND became Short in AVR
82,88,94 Module.

106

EVB-B1 User’s Manual

Expanded Board Interface Connector, which is “PCN10BK-96S-2.54DS” of Hirose co., is a Din
Connector 96Pin Female Rightangle Type. Connector of Male Type that is mated here is
“PCN10-96P-2.54DS.”

4.2.8. Power Regulator

EVB B/D gets 12V DC power through power adaptor. The powers used inside the board are 5V
and 3.3 V. The regulator is MIC4680BM(U4,U5) of MICREL. 2Pin Header (JP17, JP15, and
JP16) is placed at the end of power input 12V,5V,3.3V to measure the power usage. In normal
operation, each Header must be shorted. To shut down the regulator, Toggle Switch(SW2) is

used.

4.2.9. 3.3V Power On System Reset

Manual reset and Power On Reset is implemented using MIC2775-31BM5 of Micrel. The Input
is 3.3 V and the output are Active Low Reset Signal(/RESET) and Active High Reset
Signal(RESET).

EVB-B1 User’s Manual 107

4.3 Schemetic

4.3.1. MB-EVB-X1

Please refer to “MB-EVB-X1.DSN” in the CD.

4.3.2. PM-Al

Please refer to “PM-A1.DSN” in the CD.

4.3.3. NM7010B

Please refer to “NM7010B.DSN"” in the CD.

108 EVB-B1 User’s Manual

4.4 PAL

In EVB B/D, PAL creates Chip Select (Module Enable).
The address map of EVB B/D is same as <Fig 3.1: EVB B/D Memory Map>.
The EVB B/D support 3 Enable Signal(Chip Select) as showm in the address map of EVB B/D.

EVB B/D provides VHDL Code. For developer who uses PAL element, CUPL is recommended
since it is a freeware PAL Compiler. AWINCUPL of ATMEL co. can be used after simple
registration.

Use it with “AWINCUPL.EXE” that is downloadable from ATMEL Homepage.

4.4.1. External SRAM Area

External SRAM area is ranged from 0x0000 to Ox7fff.
The following is a VHDL Source Code that makes SRAM CS.

--NRAMCS (0x0000 - Ox7fff) :
process(Addr)
begin
if (Addr < "100000") then
NRAMCS <="0%
else
NRAMCS <="1};
end if;

end process;

The following is a CUPL Source Code created by AWINCUPL

/* < 0x8000 */
INnCS_RAM = IA15;

4.4.2. LCD Area

LCD is ranged 0x9000 ~ 0x9400.

WR and RD Signal are used together to control the timing.

|
EVB-B1 User’s Manual 109

--LCDCS (0x9000 - 0x93ff)
process(Addr, nRD, NWR)
begin
if (((Addr >="100100") and (Addr < "100101")) and (nRD ="'0" or nWR ="'0")) then
LCDCS <=1,
else
LCDCS <=0}
end if;

end process;

/*0x9000 <= < 0x9400 */
LCD_E = (A15 & |A14 & '1A13 & A12 & |A1l1 & !A10) & (InRD # InWR);

LCD is High Active Enable Signal.

4.4.3. W3150 Area

In case of W3150, the address is divided into 2 parts about same Chip.

For more details, refer to “W3150 Datasheet”

|
110 EVB-B1 User’s Manual

-- W3150 (0x8000 - 0x8400, 0xC000 - 0x10000)
process(Addr)
begin
if (Addr >= "100000") and (Addr < "100001")) or (Addr >= "110000")) then
NnCS_IINCHIP <="0%;
else
NnCS_IINCHIP <="1";
end if;

end process;

/* 0x8000 <= < 0x8400 OR > 0xCO000 */
INCS_IINCHIP = (A15 & 'A14 & |A13 & IA12 & A1l & !A10) # (A15 & Al4);

For VHDL Source Code, refer to “EVB_PAL.VHD”
For CUPL Source Code, refer to “EVB_PAL.PLD”

|
EVB-B1 User’s Manual 111

45 Parts List
45.1. MB-EVB-B1 Parts List

Please refer to “MB-EVB-X1_PARTLIST.PDF” in the CD.

45.2. PM-A1 Parts List

Please refer to “PM-A1_PARTLIST.PDF” in the CD.

4.5.3. NM7010B

Please refer to “NM7010B_PARTLIST.PDF” in the CD.

112 EVB-B1 User’s Manual

4.6 Physical Specification

4.6.1. Power Consumption

Power consumption of each component of EVB-B1 is as in the following table.

Mesuring
Power Level MIN TYP MAX UNIT)
Point
12v - 115 - mA JP15
5V - 130 - mA JP16
3.3V - 95 - mA JP17

EVB-B1 User’s Manual

113

