EVB-PIC24 User’'s Manual

(Version 1.0.0)

o) LELERLERELRLELEL]

s A s R A R AR R

=

s
(:l

Jatieeen)

'

WIZNET

@IZnet

©2006 WIZnet Co., Inc. All Rights Reserved.

= For more information, visit our website at http://www.wiznet.co.kr

@IZnet

Document History Information

Revision Description

Ver. 1.0 November 15, 2006 | Original Document

e
EVB-PIC24 User’s Manual (Ver. 1.0) ii

@IZnet

WIZnet’s Online Technical Support

If you have something to ask about WIZnet Products, Write down your question on
Q&A Board in WIZnet website (www.wiznet.co.kr). WiIZnet Engineer will give an answer

as soon as possible.

HONE . SITEMAP « CONTACTUS » KOREAN

Products Technology Howtobuy News Parners Aboutus

Related Link

Dowriaad

Products

iinChi
i

b NMT000A 8 rone
Mo

/000 s the min netuork module inchiding W31 00A g dwared
TCPAP chip), Ethomet PHY and cther glue logics. & can be usad

SR-T100A-EVB 8 mome

HIMTO00A ks the minl netwnrk module inchuding W31 00A parwiied
TCPAP chip). Ethernet PHY and other glue logics. 1t can be usad

WIZnet News

Relocation

HOME . STEWAP . GOMTACTUS KOREAM
Progducts Technology ~ Support How fo buy News Pamners Aboutus
SUPPORT © QR&A(En) HONE - SUREORT - Ba
@ CAAEn 2
QAKr) Mo | SUBJECT NAE DaTE | HITS
FAQ 45 Serialconfigurstion of IMF10,. (0) a 2005030 110
Lead-fiee Stalus 4% How check that Tx butfer ks em.. (0] Wiyusha 20050310 108
Download 43 APIior AVR Codevisn () Luke 20050370 69
Related Link 42 hanging proiem (0} oy 2008038 114
41 dynanc imeout (0) Biler 0S0IE 84
CONTACTUS fiud 40 @RE: dynamic tmeout (0) due 0050308 93
Marketing & Sales 39 IMTO10A internt problem (0) Marcin 20050308 103
I.e‘_:'_:"-‘m-sgn;m” 38 @RE IMFOI0A iteirut probls.. (0) dure 20050308 87
37 terrup (0) Biler 20050305 93
36 @R it () e 20050302 96
rekad write
12345 nest
[s £ zearcn

e
EVB-PIC24 User’s Manual (Ver. 1.0) iii

WIZnet

COPYRIGHT NOTICE

Copyright 2006 WIZnet, Inc. All Rights Reserved.

Technical Support: support@wiznet.co.kr
Sales & Distribution: sales@wiznet.co.kr
General Information: info@wiznet.co.kr

For more information, visit our website at http://www.wiznet.co.kr

e
EVB-PIC24 User’s Manual (Ver. 1.0) iv

@IZnet

Table of Contents

L. OVEBIVIBW ..ttt e+ o kbt e ek bt e e e ek b et e e e ea b bt e e e aa b b e e e e et b e e e e abb e e e e e ae e e e aneee 1
1.1. PACKAGE ...eeeie et 1

1.2. FRATUIE ...t a e 2
1.2.1. HIW FEAIUIE ...t e 2

1.2.2. FIW FEAIUIE ...t e 2

2. GEtlING SEAMEA. ... eeeieeiiiiie ettt et e e e et e e e s bb et e e s bbe e e e e arnee e 3
2.1 PC Programs INSTAlloooiiiiiiiiiii e 3
2.1.1. Development Program Install................coooiiii 3

2.1.2. EVB B/D Test PC Program Install ..., 3

2.2. (O 11Tt = T o PR 4

2.3. R T T 1 PSPPI 5
2.3.1. Manage Programcoooiuiii i e 6

2.3.2. EVB B/D Test AppliCationscooiiiriiii e 12

2.4, TroublesShOootiNg GUIAEeiiiiiiiiii e e 16
2.4.1. PN e 16

2.4.2, VIS e e 16

3. Programmer’s GUILE.........ccooiuiiiiiiiiiee ettt ettt s bt e et e e e snbae e e e eneees 17
3.1. MEMOIY MAP .ottt e e e 17
3.1.1. Code & Data Memory Map.........c.ouiuiiiiii e 17

3.1.2. SERIALEEPROM MAP ... 18

3.2. EVB B/D FIMMWAIEceiiitiiie ettt ettt ettt e e 24
3.2.1. SOUICES ..ttt 25

3.2.2. HOW 10 COMPIlE ... 26

3.2.3. HOW 10 dOWNIOAt e 26

3.2.4. EVB B/D'S MaAIN() ...t 26

3.2.5. Manage Programc.ooiuii i 30

3.2.6. APPLICALIONS ... 46

4. Hardware DeSIgNer's GUITEccooiuiiiiiiiiiie ittt e s reneeee e 91
4.1. 2] (oTod QBT To | =1 o T PP PP P PP OPPPRN 91

4.2. BIOCK DESCHIPLON.ciiiiiiiiie e 92
4.2.1. PM-PIC 24 92

4.22. NM7010B" MODULEccoiiiiiiiiiiiiieaeiiiie e 96

4.2.3. I P 96

EVB-PIC24 User’s Manual (Ver. 1.0) \Y

@IZnet

4.3.

4.4.

4.5.

4.2.4. SRAM L 97
4.2.5. RS232 POIT .o 97
4.2.6. Expanded Board INterfacecoooviiiiiiiiiiiii 97
4.2.7. [CD2 POI .. 99
4.2.8. Power REQUIALOT e 99
4.2.9. 3.3V Power On System RESEeLcc.iviiiiiiie i 99

SCNEMALIC....ceiiiii e b e esneas 100
4.3.1. MB-EVB-PIC. ... 100
4.3.2. PM-PIC24 .. .o e 100
4.33. NMT70L0B ...ttt e 100

PAITS LIS, ...eeieeeeiiiee ittt ettt rne e 101
4.4.1. MB-EVB-PIC Parts LIStccouiiiiiiie e 101
4.4.2. PM-PIC24 PartsS LiSt.......ciuiiiiiiiee e 101
443, NMT0L0B ...ttt e 101

Physical SPECIfiCAtION...........cciiiiiiiee et a e 102
4.5.1. Power CONSUMPLIONovieiiii e 102

e
EVB-PIC24 User’s Manual (Ver. 1.0) Vi

@IZnet

Figures
<FIG 2.1 : EVB B/D TEXT LCD DISPLAY ...ttt 4
<FIG 2.2: OUTPUT OF TERMINAL PROGRAMoiiiiiiiiiiiiiie ittt 5
<FIG 2.3: EVB B/D PING REPLY TEST> ...c.tiiitiiiiiiitiieeiiste sttt ab sttt bbb e 5
<FIG 2.4:MANAGE PROGRAM EXECUTION >ccciiiiiiiiiiiiiiti st 6
<FIG 2.5: NETWORK CONFIG™ ..ottt sttt sr bbb an bbb an bbb 7
<FIG 2.6: SOURCE IP ADDRESS SETUP EXAMPLEcciiiiiiiiriiiiiinie e 8
<FIG 2.7: MAC ADDRESS SETUP EXAMPLESc.ciitiiiiiiiie ittt s 8
<FIG 2.8: MENU OF CHANNEL CONFIG™oiiiiiiiiiiiiiiieiieieie sttt sne s 9
<FIG 2.9: LOOPBACK TCP CLIENT APPLICATION SETTING EXAMPLE>ccoiiiiiiiiniii e 10
<FIG 2.10: USAGE OF PING APPLICATION Scitiitiiiiiiieiieieiiresie st sne s ane s 11
<FIG 2.11: PING APPLICATION TEST> ..ottt ittt 11
SFIG 2.12: DHCP CLIENT TEST™ .ottt sttt st st 12
<FIG 2.13: LOOPBACK TCP SERVER TEST™iiiiiiiiiieiiiie it 13
<FIG 2.14: LOOPBACK TCP CLIENT ..ottt sttt 13
<FIG 2.15: LOOPBACK UDP TEST™ ..ottt e s 14
SFIG 2.16: WEB SERVER TEST™ ...ttt sttt st an et 14
<FIG 2.17: DEFAULT WEB PAGE OF EVB B/D>........ccocotiiiiiiiieiceie et 15
<FIG 2.18: WEB PAGE OF EVB B/D CONTROLcooiiiitiiiiiitenieie sttt sne e sne e snennane s 15
<FIG 3.1: EVB B/D MEMORY IMAP> ..ottt ittt sttt an ettt ne et sn et sne b anennane s 17
<FIG 3.2: SERIAL EEPROM MAPSoiiiiiiiiiii e 18
SFIG 3.3: EVB B/D’S MAIN()S ...ttt sttt bttt e bbbt b et s et et et bt nbeeneene e e nnas 29
SFIG 3141 CHECK _MANAGE()> ..otiiteittiiietie ettt sttt ettt bttt b e e b e bt b e b e bt e b e et et et ebe st e aeeneeeennas 30
SFIG 3.5 MANAGE _ CONFIG()™ .. tiitiiteitietie ettt sttt ettt s b ettt b e e et et eb e b e bt e b e e e et e besbesbeeneeneenennas 31
<FIG 3.6: MANAGE _ NETWORK()™ ...tttttitietietete ittt eseesee et sbesbe st s e e e besbesbesbe s bt ese e e ebesbesbenbeaneeseenennas 33
SFIG 3.7 MANAGE _ CHANNEL()> 1. ttittitietie ettt sttt ettt b ettt s e e b et b e s b e bt e bt et et et sbesbe bt eneeneneas 35
SFIG 3.8: PING _ REQUEST ()™ ..tittittsteitietie ettt sttt ettt st be b et h e e b et eb e e b e e bt e bt et et e s besbenbeeneeneenennas 37
<FIG 3.9: PING_REQUEST() — CONTINUESiittitirtiiuiatieieesiestestesie st esee e sbe st sbesbe e ese e s enbestesaesbesneeseennennas 38
<FIG 3.10: ICMP MESSAGE VS PING MESSAGE™cocoiiiiiiiiiiiieie s 39
S (e Tt I e 1T) DSOS USROS 42
<FIG 3.12: DISPLAYPING STATISTICS()> .. eteteitesttsterieesieieesiestestesie st eseeseesbestesbesbesseeseessenbestesaesbesseeseeseennas 43
SFIG 3.13: SENDPINGREPLY ()3 ...ttt sttt sttt bbbt sttt ettt bttt n s 44
< FIG 3.14 : LOOPBACK_TCPS() S .tiiteiuietieieentestestesteaitaseeseestestesbesbe s st esee e e besbe bt sbe s bt ese e s ebesbeabesbeaneeneennennas 46
SFIG 3.15: LOOPBACK _TCPC ()™ i ititttitiatieitesie sttt ste it esee e be st b be st ese e e et e st sbesbe bt e st et ebesbesbesbe st eneenennas 49
SFIG 3.16: LOOPBACK _UDP()>....tiitiittieetieitente st sttt esee ettt s be b et es e e et e s besbe st e bt e st e s et e sbesbesbeeneeneenennas 50

e
EVB-PIC24 User’s Manual (Ver. 1.0) vii

@IZnet

<FIG 3.17: HTTP MESSAGE FLOWS ..ottt e 52
SFIG 3.18: WEB_SERVER()™....tiitiitieteitietie ettt sttt sttt ee et st sbesbe et es e e e b e st eb e e b e e bt e st e e et e besbesbeeneeneenennas 55
SFIG 3.09: PROC_HTTP () ootiiiite ittt ettt h skttt ettt bt b et h e e e b e b eb e b e e bt e Rt et et et ebenb e bt ene e e ennas 56
<FIG 3.20: PARSE_HTTP_REQUEST()> .. utititertestesteaieeseeseestestesteste st esee e esbesbesbesbe s st esee s ebesbesbesbesneeneennennas 58
SFIG 3.21: FIND_HTTP_URI_TYPE()> 1etteiieitiie sttt ettt sttt bbbttt et b et bbb n e 59
<FIG 3.22: GET_HTTP_URI_NAME() & GET_HTTP_PARSE_VALUE()>...cceiiiiiiriirieiieie e 59
<FIG 3.23: NETCONF.CGI PROCESSINGSooctiiiiiieiiiiiire ittt 61
<FIG 3.24: LCDNLED.CGI PROCESSING>ccciiiiiiiiiiiiinit st 62
<FIG 3.25: DHCP MESSAGE FLOWSoiiiiiiiiiitiiiii e s 64
<FIG 3.26: DHCP MESSAGE FORMAT™oiiiiiitiiiiieie ittt 65
<FIG 3.27: DHCP MESSAGE’S OPTION FIELD FORMAT>coiiiiiiiiiiiiie ettt 66
SFIG 3.28: INIT_DHCP_CLIENT()> .etttitietieitete st sttt etee et sbesbe st es e e b et bt st et e s e e s ebesbesbesbe st eneenneneas 68
SFIG 3.29: GETIP_DHCP S()> ...ttt bbbttt b e bbbt ene e e 69
<FIG 3.30: DHCP MESSAGE FLOW BY DHCP CLIENT STATE>ccciiiiiiiiiineicsie e 71
<FIG 3.31: CHECK _DHECP _STATE()> ... i cuietiie ettt ettt sttt et bbbttt st sbe bt e et 72
<FIG 3.32: PARSE_DHCPMSG() & CHECK_DHCP_TIMEOUT()>ociiiiieiiirerieiesieniee e 73
<FIG 3.33: DOMAIN NAME SYSTEM STRUCTURE & DNS MESSAGE FLOW>.......cccovviiiiiiiiniciciene 75
<FIG 3.34: DNS MESSAGE FORMATSoiiiiiiiti ittt s 76
<FIG 3.35: HEADER SECTION FORMATSociiiiiiiiiiieieieiie sttt 76
<FIG 3.36: QUESTION SECTION FORMAT™ctiiiiiiiiieiitieiieesite e siessie s stes e sae e e e ssbeessbe e snteesnbeesnaeennns 76
<FIG 3.37: RECODE RESOURCES FORMATciiiiiiiiiiiiieit it 77
<FIG 3.38: GETHOSTBYADDR() & GETHOSTBYNAME()>oitiitiitinieiiieiieieesie sttt se et sre b e 79
SFIG 3.39: DNS_QUERY () -ttt ittt ettt st sttt bbbt bt h e e e b e bt e bt b e bt e bt et et et sbesb e bt ene e e ennas 80
<FIG 3.40: DNS_MAKEQUERY () ... tttttitietieieenie ittt ste st etee e e be st sbesbe st se e e et et sbesbe e bt e s e e s ebesbesbesbeaneeneenennas 81
<FIG 3.41: ExAMPLE OF QNAME FIELD TRANSFORMATION OF QUESTION SECTION >......ccccovivieivnnnnn 82
<FIG 3.42: DNS_PARSE _RESPONSE()> ...uiititeitestirteaieeteeieestestestestesieeseessesbestesbesbesseaseensenbeseesaesbesseeseeseennas 84
<FIG 3.43: DNS_PARSE_QUESTION() & DNS_ANSWER()>ccutitirieiiaiieieenie sttt see et sne i see s 86
SFIG 31441 PARSE_INAME () ...ttt ittt sttt ettt bt bt b e e e b e b bt e b e e bt e bt et et e besbesbe bt eneeneneas 87
<FIG 3.45: DNS MESSAGE COMPRESSION SCHEMEScciuiitiiiiieiteaieeseesieesieesieassessnesseessessteessessnesnnssnns 88
<FIG 4.1: EVB B/D BLOCK DIAGRAMc.oitiitiiitiitiiietiste ettt ettt b et sre st sne et sne e b snenn s anennane s 91
<FIG 4.2: PM-PIC24 MODULE DIMENSIONuiiitiitieiitsiiesieesiee e ste e sieesseesbeesbessbesssessessseesnesssesnnesnes 92

e
EVB-PIC24 User’s Manual (Ver. 1.0) viii

@IZnet

Tables

<TABLE 1-1: LIST OF ITEMS CONTAINED IN THE EVB B/D>.....ccccooiiiiiiiii e e 1
<TABLE 1-2 : CONTENTS OF SOFTWARE CD> ..ottt 1
<TABLE 2-1 : TERMINAL PROPERTIES SETTING ™cciiiiiiiiiiitiirisiisiisies et 4
<TABLE 2-2 : EVB B/D DEFAULT NETWORK INFORMATION Scutitiiiiiiiieieentesiesiestesseeseeseeseeseessessesnesneenes 6
<TABLE 2-3 : MENU OF NETWORK CONFIG......cciitiiiiiiiiiiieiit sttt sr st 7
<TABLE 2-4 : EVB B/D DEFAULT CHANNEL INFORMATION Suiitiitiaiiaieie it stesiesiesiesneeieseesieseesaessesnesnee s 8
<TABLE 2-5 : MENU OF CHANNEL CONFIG......0oiiiiiiiiiiiiiiie ittt s 9
<TABLE 2-6 : W3150A" CHANNEL APPLICATION TYPES........cvcuiiueteciieeescissesesieseesessssssessesesssnsssesasnessenans 9
< TABLE 2-7 APPLICATION DEFAULT VALUE ...ttt st 10
<TABLE 3-1: DEVICE MAP DEFINITIONSooiiiiiiiiiieieie st 18
<TABLE 3-2: SERIAL EEPROM MAP DEFINITIONSoiiiiiiiitiitisieiieeeieeste e siesseseeseessesseseessessesseesesssens 19
<TABLE 3-3: SYSTEM INFORMATION S ..ottt sre st sr e sr e 20
<TABLE 3-4: SYSINFO DATA TYPE DEFINITIONS.....ccciiiiiiiiit it s 20
<TABLE 3-5: SYSTEM INFORMATION ACCESS FUNCTIONSoiiiiiiiiiiieiiieesteesieeie s ssie e sieesneesne e 20
<TABLE 3-6: NETWORK INFORMATIONcoiiitiitiitiiiiaiieieisie st sre st sne s sne s 21
<TABLE 3-7: NETCONF DATA TYPE DEFINITION>ccooiiiiiiitiiriniiiieie et e 21
<TABLE 3-8: NETWORK INFORMATION ACCESS FUNCTIONS™cccceiiiiiiiiiiiineicseeeee s 21
<TABLE 3-9: CHANNEL INFORMATION Scviiiiitiitiitiiiietieieise st sre et sne st sr e 22
<TABLE 3-10: CHANNEL APPLICATION TYPE Siiiiiiiieieiienit st 22
<TABLE 3-11: CHCONF DATA TYPE DEFINITIONccoiiiiiiiiiiiiniiieie e s 23
<TABLE 3-12: CHANNEL INFORMATION ACCESS FUNCTIONccoioiiiiiiiiiiirineseeie e 23
<TABLE 3-13: EVB B/D SOURCESScciiiiiitiieiiite ettt sttt sr et ane bttt sn et snenn b anennene s 25
< TABLE 3-14 : W3150A7'S DEFINE OPTION S.......coiiueiiciiceeieieceeseeeeseseessesseses s issesssissessesansessessessnsnes 26
<TABLE 3-15: REFERENCE FUNCTIONS IN EVB B/D’S MAIN()>couieiiiiieiiesie e 28
<TABLE 3-16: CALLER FUNCTION AT MANAGE PROGRAM >cciiiiiiiiiiiiiiiesit ettt 32
<TABLE 3-17: REFERENCE FUNCTIONS IN MANAGE_CONFIG()> ...ccuiciiiiiiiiienicsieseeie et 34
<TABLE 3-18: CONSTRAINT BY APPLICATION TYPES>ccuttiiiieitieiteeiiesee e steeste et sibe st st seeesteene e s 35
< TABLE 3-19: REFERENCE FUNCTIONS IN MANAGE_CHANNEL() ..c.cciitiiiiirenieiesieniee e 36
<TABLE 3-20: PINGMSG DATA TYPE DEFINITIONSooitiitiittitisieiieeseeieesiesteseesiesieesesssessessessessessessesssennas 40
<TABLE 3-21: PINGLOG DATA TYPE DEFINITIONScoiiiiiiiiiiiriniiieieie et 40
<TABLE 3-22: REFERENCE FUNCTIONS IN PING_ REQUEST()> ...cutiuiatieieiesie st siesieeiee e 45
<TABLE 3-23: REFERENCE FUNCTIONS IN LOOPBACK_TCPS()> ...eiiiiiieierieniesiese e 47
<TABLE 3-24: REFERENCE FUNCTIONS IN LOOPBACK_TCPC()> ...eiieuiiieieiteniesiesieeiee et sie e sie e e 49
<TABLE 3-25: REFERENCE FUNCTIONS IN LOOPBACK_UDP()> ..utiiitiiiiieite st s 51

e
EVB-PIC24 User’s Manual (Ver. 1.0) iX

@IZnet

<TABLE 3-26: WEB BROWSER’'S HTTP REQUEST OPERATION PROCEDURE >.......ccccviiiieeiiiiiiiiiieeeeeens 52
<TABLE 3-27: HTTP MESSAGE FORMATSoiiiiiiiiiiiieiiie it 53
<TABLE 3-28: HTTP MESSAGE BETWEEN EVB B/D AND WEB BROWSER>...........ccccocveienenn. 54
<TABLE 3-29: SYSTEM ENVIRONMENT VARIABLES USAGE AT “EVBCTRL.HTML” >cccooiiniiiniiieienene, 57
<TABLE 3-30: “ST_HTTP_REQUEST DATASuiiiiii ittt rie sttt sttt aa e naaennns 58
<TABLE 3-31: REFERENCE FUNCTIONS IN WEB_SERVER()>citiiaiiiiiienie et 63
<TABLE 3-32: DHCP MESSAGE DATATYPES ...ttt e 65
<TABLE 3-33: DHCP MESSAGE OPTION CODE DEFINITIONScccciiiiiiiiiiiiiineseeee s 67
<TABLE 3-34: DHCP CLIENT STATE & TIMEOUT DEFINITION>......ccciciiiiiiriiiirinesesee e 70
<TABLE 3-35: DHCP MESSAGE FLAG FIELD SETUPS.......coiiiiiiiiiieiieaiie ettt ettt sne e sne e 71
<TABLE 3-36: REFERENCE FUNCTIONS IN DHCP CLIENT>ciiiiiiiiieiee it 74
<TABLE 3-37: DNS MESSAGE DATA TYPES ..ottt 78
<TABLE 3-38: QUERY TYPE DEFINITION AT DNS_QUERY()>eiutittiuiaiieeeie e sie e eiee et esee e 78
<TABLE 3-39: CONSTANTS AND MACRO USED IN HEADER SECTION>cccoviiiieieniiirenn e 82
<TABLE 3-40 : CONSTANTS DEFINITION AT QTYPE & QCLASS FIELD>cocoiiiviieiiee e 83
<TABLE 3-41 : CONSTANT DEFINITION AT HEADER SECTION’S RCODE FIELD>........c.ocooiiiniiiciene, 85
<TABLE 4-1: PM-PIC24 MODULE PIN DESCRIPTIONcciititieiteiteaetaieesreesieeiessnesseeseeeseeeseesssesnesens 93
<TABLE 4-2: ISP PIN DESCRIPTIONcutiiiiiitiitintisiieiie et sre st sne e 95
<TABLE 4-3: LCD PIN DESCRIPTIONSctiiiiiiiitiiiiieie et sn s e 96
<TABLE 4-4: EXPANDED BOARD INTERFACE PIN DESCRIPTION>ccciiiiiiiiiiiicie s 97
< TABLE 4-5 EVB B/D POWER CONSUMPTIONciiiiieiatinieiarenrenesie st s ssesne e sneesnesnese s 102

]
EVB-PIC24 User’s Manual (Ver. 1.0) X

@IZnet

1. Overview

EVB-PIC24 (referred to as “EVB B/D or EVB” from here on) is W3150A" Evaluation B/D for PIC developers.

1.1.Package

When purchasing EVB B/D, please make sure you have all the following contents.

<Table 1-1: List of Items Contained in the EVB B/D>

Item Quantity
MB-EVB-PIC EVB Main Board 1
PM-PIC24 MCU Module (Plugged In MB-EVB- p
EVB B/D PIC)
NM7010B* (Plugged In MB-EVB-PIC) 1
Power Adaptor (5V) Option
MICROCHIP ICD2 Tool Option
Software CD 1
Accessory
UTP Cable 1
Serial Cable 1
<Table 1-2 : Contents of Software CD>
Directory Contents
EVB- DOC Manual User’s Manual
PIC24 Datasheet All sorts of Datasheet
HW Schematics All sorts of schematics
Part List All sorts of Part List
SW Firmware EVB B/D Firmware
PC Utility All sorts of Tool Program
NM7010B"
W3150A"

® The contents of Software CD could be changed by version. Please check “ReadMe.txt” of CD.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

@IZnet

1.2. Feature

1.2.1. H/W Feature
EVB B/D is composed of 3 type B/Ds
@® PM-PIC24
- MCU : PIC24FJ128GA006, 16MHz
- RAM : 8KB SRAM (Internal), 32KB SRAM(External)
- ROM : 128KB Flash (PIC24 Internal Flash)
- JTAG, ICSP, ICE
@ MB-EVB-PIC
- Power : 5V Adaptor
- UART : RS-232 Serial Port, (default 57600 Baud Rate)
- LCD Display : 16 X 2 Text LCD
@ Network Module (NM7010B")
- WB3150A" : Hardwired TCP/IP Chip W3150A"
- PHY : RTL8201CP(RealTek), 10/100 BaseT(X) Auto Negotiation
- MagJdack : RD1-125BAG1A (UDE) , Integrated Transformer(1:1)
Link & ACT LEDs
1.2.2. F/W Feature
@ Manager mode
- Network Config : MAC, Source IP, G/W IP, S/N, DNS IP Setup
- Channel Config : W3150A" Test Application Setup for each Channel
- Ping Test : Ping Request Test with DNS
@ Application mode
- Loopback TCP Server : TCP Server Mode Test Application
- Loopback TCP Client : TCP Client Mode Test Application
- Loopback UDP : UDP Test Application
- Web Server : Web Server Test Application
- DHCP Client : Dynamic Network Config using DHCP Server

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

@IZnet

2. Getting Started

2.1.PC Program Installation

2.1.1. Development Program Installation

Please refer to Microchip (www.microchip.com) for more information.

2.1.1.1. MPLAB IDE(Integrated Development Environment)

It included following features — assembler, linker, simulator(with peripheral), VDI(Visual Device Initializer) and
full featured debugger.

For installation and usage of MPLAB IDE, refer to the related manual.

Firmware of EVB B/D is currently using MPLAB IDE Version 7.40 and can be changed with newer IDE.

21.1.2. MPLAB C30

It is a full-featured ANSI compliant with C compiler for the Microchip 16-bit devices. It is also fully compatible
with MPLAB IDE.

For installation and usage of MPLAB IDE, refer to the related manual.

Firmware of EVB B/D is currently using MPLAB C30 Version 2.02 and can be changed with newer compiler.

2.1.1.3. ROM File Maker Program

ROM File Maker Program is a utility program that provides convenience in using simple ‘ROM File System’
for EVB B/D. The reason that ROM File Maker Program is used in EVB B/D is to access Web Pages for Web
Server Test Application as ‘ROM File System’. Refer to “ROM File Maker Manual Vx.x.pdf” for further

instruction about installation and ROM File Maker program.

2.1.2. EVB B/D Test PC Program Installation

2.1.2.1. Loopback Test Program (AX1) Installation

Loopback Test Program (referred to as “AX1” from here on) is a program to evaluate the performance of
W3150A" and loopback a file and packet data in connection with EVB B/D channel applications such as
Loopback TCP Server/Client and Loopback UDP. Please refer to “AX1 Manual Vx.x.pdf” for installation and

usage.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

@IZnet

2.2.Quick Start

After confirming the package of EVB B/D, test EVB B/D in the order shown below.
(O Connect test PC to EVB B/D using UTP cross cable directly.
Connect test PC to EVB B/D using serial cable directly.
Connect 5V power adaptor to EVB B/D
@ Confirm network information of Test PC as following
Source IP Address : 192.168.0.3
Gateway IP Address : 192.168.0.1
Subnet Mask : 255.255.255.0
3 Install AX1 on Test PC. Refer to Chapter 2.1.2.1

@ After the execution of serial terminal program (like Hyperterminal), set up properties as following.

<Table 2-1: Terminal Properties Setting>

Properties Setting Value
Bits Per second(Baud Rate) 57600 bps

Data Bits 8 Bits
Stop Bits 1 Bit
Parity No
Flow Control None

After completion of terminal setup, connect EVB B/D and wait.
(® Turn on the power switch of EVB B/D
Following should be checked.
- Check lighting on power LED(D1) of EVB B/D when powering on
- Check if LEDs of D2 and D3 blink three times by turns.
- Check if Text LCD display of EVB B/D outputs in the way shown in <Fig 2.1> and shown in <Fig

2.2> on the Terminal Program

< MANAGE MODE > | Afer abOU”SeCO“d; <EVB-PIC24 VER X.X>

(11111 192.168.000.002

<Fig 2.1 : EVB B/D Text LCD Display>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

@IZnet

Press 'M' to enter the manager MOdE.......eeeeronan

CEEREEEREEEE RS R R R S R R R R
EVB-B1 - Test in Direct Hode

cEREEEREEE SRR R R R R R R
Copyright : WIZnet, Inc. 2005 ~ 2006

[#] Mini Term Homepage : http://www.wiznet.co.kr
File (E) Configure (C) Transfer (T) Help (H) iSupport : support@wiznet.co.kr
Sales : salesfwiznet.co.kr
%} ;Elm —"J 777
2 LX After about 7 seconds JF/w version : 2.0.0.1
H/W Version : TB-B1
Press 'M' to enter the manager mode..... ALC Addr : 00.09.0¢.00.0G.00
- Source IP ¢ 192.168.0.2
Gateway IP : 192.168.0.1
Subnet Mask i 255.255.255.0
IDNS Server IP : 0.0.0.0
Merm alloc i 55

cEEREEEEEEE R R R R R

: Loop-Back TCP Server Started.
: Loop-Back TCP Client Started.
: Loop-Back UDP Started.

RS

: Web Server Started.

<Fig 2.2: Output of Terminal Program>
® Execute Ping test with EVB B/D
C:Wrping 192.168.8.2
Pinging 192.168.8.2 with 32 hytesz of data:
Reply from 1922.168.8.2: hytes=32 time<iBms

Reply from 1922.168.8.2: hytes=32 time<iBms
Reply from 122.168.8.2: hytes=32 time<iBms

Reply from 1922.168.8.2: hytes=32 time=18ms

Ping statistics for 192.168.8.2:

Packets: Sent = 4, Received = 4. Lozt = 8 (8% loss),
Approximate round trip times in milli-—seconds:

Minimum = Bms, Maximum = 18ms,. Average = 2ns

<Fig 2.3: EVB B/D Ping Reply Test>

@ Execute “AX1" program. Refer to “AX1 Manaul Vx.x.pdf”

Test the operation of “AX1” program with TCP Client. Refer to “AX1 Manaul Vx.x.pdf”

After setting the Server IP address as “192.168.0.2" and port Number as “5000" by clicking
[TCP>>Connect] menu, then click [TCP>>Send] menu or [Ts], [Tr], [«] icons.

@ Loopback any file or packet between “AX1” program and EVB B/D.

2.3.EVB B/D Test

The firmware of EVB B/D can be divided into Manage Program and EVB B/D Test Application.
Manage Program performs system configuration to run EVB B/D and EVB B/D Test Application is Network

Application Program for W3150A" test.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

@IZnet

2.3.1. Manage Program
Manage Program is a program that is executed upon receiving character ‘M’ or ‘m’ from the terminal program
within 7 seconds when doing the manual reset of EVB B/D and EVB B/D power on. This program sets up the

Channel Application of W3150A", and performs the ping request test with DNS server.

File (F3 Configure (C) Transfer (T} Help (H}

LY

t L X
Press 'M' to enter the manhager mode..

1 HNetwork Config
Z2 : Channel Config
3 : Ping App Test
F : Factory Reset
E Exit

<Fig 2.4:Manage Program Execution >

2.3.1.1. Network Configuration
It configures network information that is used in EVB B/D. When choosing ‘1" at terminal Program of <Fig
2.7>, network information of EVB B/D can be set as desired. The default network information of EVB B/D is

shown in <Table 2-2>.

<Table 2-2 : EVB B/D Default Network Information>

Network Information Default Value
MAC Address 00.08.DC.00.00.24
Source IP Address 192.168.0.2
Gateway IP Address 192.168.0.1
Subnet Mask 255.255.255.0
DNS Server IP Address 0.0.0.0

If “Network Config” menu is selected on Manage Program, menu shown in <Fig 2.8> can be displayed and

each function is described in <Table 2-3>.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

W IZnet

Select 2?1

I Display config

1 Jource IF

z zateway IP

3 ¢ J3ubnet Mask

4 : DN3 Serwver IP

hul MAC address

ry memory Allocation
F Factory reset

E Exit

<Fig 2.5: Network Config>

<Table 2-3 : Menu of Network Config>

Menu

Description

: Display Config

Display current Network Information

: Source IP Address

Sets up Source IP Address

: Gateway IP Address

Sets up Gateway IP Address

: Subnet Mask

Sets up Subnet Mask

Mlw| Nk |O

: DNS Server IP

Sets up DNS Server IP Address
<Warning> DNS Server is information needed for “Ping Request”
Test and transformation of Domain Name into IP address and so it

must be set up as Static IP Address.

‘A or‘a’

Sets up Memory Allocation.
W3150A" Memory Size Register.(RMSR, TMSR)
Refer to “W3150A" Datasheet.pdf.

F : Factory Reset

Initialization of the system with the default value.

Refer to <Table 2-2>

‘M’ or‘m’ Sets up MAC Address.
<Warning> This value is not change when Factory Reset.
E : Exit Exit “Net Config”

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

@IZnet

<Fig 2.9> is an example of setting the Source IP of EVB B/D in Network Config

D Display config

1 Jource IF

2 cateway IP

3 ! Zubnet Mask

4 : DNS Serwver IF

M : MALC address

b memory Allocation
F Factory reset

E Exit

Jelect 2 1

Source IP * 192.165.0.100

<Fig 2.6: Source IP Address Setup Example>

<Fig 2.10> is an example of setting the MAC address of EVB B/D in Network Config

I Display config

1 Jource IF

2 cateway IP

3 : SBubnet Mask

4 : DS Serwver IF

M : MALC address

b memory Allocation
F Factory reset

E Exit

Gelect 7 om

MiLC Address 2 00.08.doc.00.00.20

<Fig 2.7: MAC address Setup Example>

2.3.1.2. Channel Config
It sets up test application that can be operated in W3150A" 4 channels of EVB B/D. If ‘2’ is selected, each

channel can be set up. The default W3150A" channel information is shown in <Table 2-4>.

<Table 2-4 : EVB B/D Default Channel Information>

W3150A" Channel | Test Application
1* Loopback TCP Server (Port 5000)
2 Loopback TCP Server (Port 5000)
3 Loopback TCP Server (Port 5000)
4" Loopback TCP Server (Port 5000)

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

@IZnet

If “Channel Config” menu is selected in manage program, <Fig 2.11> is displayed and the functionality of

each menu is same as <Table 2-5>.

Zelect 2

] Display Config
1 l1st Channel

2 1 Znd Channel

3 : 3rd Channel

4 4th Channel

F Factory Reset
E Exit

<Fig 2.8: Menu of Channel Config>

<Table 2-5: Menu of Channel Config>

Menu Description

D : Display Config Displays current test application type of each W3150A" Channel

0: 1° Channel Sets up test application at W3150A" No. “0” channel
<Warning> As developing EVB B/D, DHCP Client Application Setup is

possible at only No. “0” channel.

1: 2" Channel Sets up test application at W3150A" No. “1” channel

2 : 3" Channel Sets up test application at W3150A" No. “2” channel

3 : 4" Channel Sets up test application at W3150A" No. “3” channel

F : Factory Reset Initialization into original setup status. Refer to <Table 2-4>
E : Exit Exit “Channel Config”

The test application type for each W3150A" channel is shown as <Table 2-6>

<Table 2-6 : W3150A" Channel Application Type>

Application Type Description
No Use Not used
DHCP Client Receiving network information of EVB B/D from DHCP server
dynamically

<Warning> If DHCP server does not exist in LAN, it sets back to

default value after certain amount of time

TCP Loopback Server TCP Server Test Program
<Warning> EVB B/D : TCP Server, AX1 : TCP Client
TCP Loopback Client TCP Client Test Program

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

(;;IZnet
<Warning> EVB B/D : TCP Client, AX1 : TCP Server

Loopback UDP UDP Test Program

Web Server Web Server Test Program

Other application types except for “DHCP Client” can be repeatedly set up regardless of channel.

<Fig 2.12> shows an example of setting the 2" channel of W3150A"* as “TCP Loopback Client”

When inputting simply [ENTER] without IP address or port number, the default value is applied. <Table 2-7>

shows default values required for each application.

Gelect 7 2

Gelect the followed APP=s type for 1 channel.
O : MNo Use

Loop-Back TCP Zerwver

Loop-Back TCP Client

Loop-EBack UDF

Wekh S3erwver

o Qb2

Gelect 7 03
Gerver IP Address ?

Default Applied. 192.168.0.3
Gerver Port Num (1~65535) 7
Default Applied. 3000

<Fig 2.9: Loopback TCP Client Application Setting Example>

< Table 2-7 Application Default Value >

Application Type Default Value
DHCP Client None
TCP Loopback Server Listen Port Number : 5000
TCP Loopback Client Server IP Address : 192.168.0.3
Server Port Number : 3000
Loopback UDP Source Port Number : 3000
Web Server HTTP Port Number : 80

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

10

W IZnet

reply.

2.3.1.3. Ping Application Test

Ping Application Test is a program created for IP RAW channel evaluation of W3150A" and sends Ping
request to a certain peer and receives Ping reply. This program is set up identically with the ping command in

the DOS prompt. It's executed when ‘3’ is chosen <Fig 2.4:Manage Program Execution >

* | Mini Term =15l
File (E) Configure (C} Transfer (I) Help (H)
LR Y
@ LX| ¢

2 : Channel Config
3 : Ping App Test
F : Factory Reset
E : Exit
[Select ? 3
Ping Regeust program started...
Usage : ping [-t] [-a] [-n count] (-1 size] [-¥ timecut] destination-list
Option :

-t Ping the specified host until stopped.

To see statistics and continue - type Control-Break:
To stop - type Control-C.

-a Resolve addresses to hostnames

-n count Number of echo requests to send.

-1 size Send buffer size.

-¥ timeout Timeout in milliseconds to wait for each reply.
PING>
Connected | 57600, 8-None-1,None | Capture :OFF | @rx@T1x

<Fig 2.10: Usage of Ping Application >

<Fig 2.10> displays the execution screen of Ping application and shows how to use the Ping application.

<Fig 2.11> shows the real example of sending the Ping request to the destination and receiving the Ping

[IMini Term =10 x|
File (E) Configure (C) Transfer (I) Help (H}
X
2 LX

-n count Number of echo reqguests to send.

-1 size Send buffer size.

-w timeout Timeout in milliseconds to wait for each reply.
PING> ping www.yahoo.co.kr
[DNS SERVER:164.124.101.2
[Ping Request to 202.43.214.151[www.yahoo.co.kr]
Pinging 202.43.214.151 with 32 bytes of data :
Reply from 202.43.214.151 : bytes=32, time<=2ms
Reply from 202.43.214.151 : bytes=32, time<=2ms
[Reply from 202.43.214.151 : bytes=32, time<=2Zns
Reply from 202.43.214.151 : bytes=32, time<=2ms
Ping statistics :

Packets: Sent = 4, Received = 4, Lost = O
Ping Reply Packets = 4

[PING>
Connected | 57600, 8-Nome-1.None | Capture : OFF | @rx@ T

<Fig 2.11: Ping Application Test>

To terminate the Ping application type “exit” at the “PING>" prompt.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuen s, JesN y20Ild-an3

11

@ IZnet

2.3.2.
2.3.2.1.

2.3.2.2.

EVB B/D Test Applications
DHCP Client

VA ..
I || Mini Term

to LY

File (F) Configure (C) Transfer (I) Help (H)

DHCP Client Application is an application that dynamically assigns network information for EVB B/D by
acquiring the information from DHCP Server. To test DHCP Client, first of all, the 1% channel application type

of W3150A" must be set up as “DHCP Client” using [Manager>>Channel Config>>0th Channel] menu.
Refer to Chapter 2.4.1.2

<Fig 2.15> is the screen that DHCP Client successfully obtains network information. Note that DHCP Client
will be set with default network information if DHCP Server does not exist or is not able to obtain network

information from DHCP Server.

: DHCH Client Start.
AC : O0x00.0x08.0xDC.0x00.0x00.0x00
et _network information frorw DHCP Server...

F/W Version
H/W Version
MAC Addr
Source IP
Gateway IP
Subnet Mask

Mem alloc

Connected

HEHBHEBHE AR AR BB H BN HHE
EVB-B1 - Test in Direct MNode

EEEEEE R R R
Copyright : WIZnet, Inc. 2005 ~ 2006
Homepage : http://vww.wiznet.co.kr

Support : supportfwiznet.co.kr

Sales : salesBwiznet.co.kr

DNS Server IP :
| EEEEEEER S EERE SRR R R 5 E- 0
1 : Loop-Back TCP Client Started.

2 : Loop-Back UDP Started.
3 : Web Server Started.

€ DHCP Client Start Log

s mlOOs Do 00 00 00
:1210.221.197.33
:11210.221.197.33
:]255.255.255.0
164.124.101.2
HER-2-1

€ Network Information received from DHCP Server

57600, 8-None-1, None Capture : OFF @rRx@ TX

<Fig 2.12: DHCP Client Test>

Loopback TCP Server

channel connected with “AX1” Program of Test PC. First of all, set any channel as “Loopback TCP Server

Loopback TCP Server application is an application that loops back any file or packet data through TCP

”

application type using [Manager>>Channel Config] menu of EVB B/D to test Loopback TCP Server.
When setting up “Loopback TCP Server” application type of EVB B/D, you can set listen port to any value.
Here, it's set as the default value, 5000. Refer to Chapter 2.4.1.2

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

12

W IZnet

After setup of EVB B/D is complete, run “AX1” at the test PC, and try the connection to the IP Address. When
the connection between EVB B/D and “AX1” is successful, loop back the data. Refer to “AX1 Manual

Vx.x.pdf”

Source IP : 192.168.0.2
Gateway IP : 192.168.0.1
Subnet Mask :+ 255.255.255.0

DNS Server IP : 0.0.0.0
MAC Addr : Ox00.0x08.0xDC.0x00.0x00.0x35
bR EEEEEEFE R R E R R R 88

: Loop-Back TCP Serwver Started.
: Loop-Back TCP Serwver Started.
: Loop-Back TCP Server Started.
§ Eonp—Back TCP Server Started.
: Connected by 192.168.0.30(2313”

[=] =]

H Peer Connection Information in 0 channel of iinChip™

<Fig 2.13: Loopback TCP Server Test>

2.3.2.3. Loopback TCP Client

Loopback TCP Client Application is an application that loops back any file and packet data through TCP
channel connected with “AX1” program of test PC

After running the “AX1” on the server, set any channel of W3150A" as “Loopback TCP Client” application
type using [Manager>>Channel Config] menu of EVB B/D.

When setting up the “Loopback TCP Client” application type of EVB B/D, set the Server IP as the IP Address
of the test PC and set server port as the waiting server port number(3000). Refer to Chapter 2.4.1.2.

After setting up EVB B/D, exit from the manager program and run EVB test application. If EVB B/D is

connected to “AX1” successfully, loop back the desired data. Refer to “AX1 Manual Vx.x.pdf”

Source IP : 192.168.0.2
Gateway IP : 192.168.0.1
Subnet Mask : 255.2585.255.0

DNS Server IP : 0.0.0.0
MAC Addr : 0x00.0x08.0xDC.0x00.0x00.0x35
EEEFEREEFEEREEEEEEEEE R R 853555534

Loop-Back TCP Server Started.

Loop-Back TCP Client Started.

TOUD-DaCR ICF SCLVEL SLarced.

Loop-Back TCP Server Started.

Connected by 192.168.0.30(2827) | Peer Connection Information
in 1 channel of iinChip™

=W N =]O

<Fig 2.14: Loopback TCP Client>

2.3.2.4. Loopback UDP

Loopback UDP is an application that loops back any file and packet data through UDP channel connected
with “AX1” Program of Test PC. First of all, to test Loopback UDP, set up any channel of W3150A" as
“Loopback UDP” application type using [Manager>>Channel Config] menu of EVB B/D.

When setting up “Loopback UDP” application type, set source port as any value. Here, it's set as 3000. Refer

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

13

W IZnet

to Chapter 2.4.1.2
After EVB B/D setup is over, loop back desired data with IP address and UDP source port of EVB B/D using

menu or icon related to UDP.
Refer to “AX1 Manual Vx.x.pdf".

Source IP : 192.168.0.2
Gateway IP : 192.168.0.1
Subnet Mask s 255.255.255.0

DNS Server IP : 0.0.0.0
MAC Addr : Ox00.0x08.0xDC.0x00.0x00.0x35
HEHHGHBEEBEBBHERERERBRBRERABHHBHBREREHEH:

] Loop-Back TCP Server Started.
1 Loop-Back TCP Client Started.
2 Loop-Back UDP Started. !(— Loopback UDP Application Log
K] Loop-bac erver arted.
<Fig 2.15: Loopback UDP Test>
2.3.2.5. Web Server

Web Server application sends and receives web pages and EVB B/D control data etc. through HTTP channel
connected with web browser. For Web Server testing, set up any channel of W3150A" as “Web Server”
application type using [Manager>>Channel Config] Menu of EVB B/D.

When setting up “Web Server” application type of EVB B/D, set HTTP port as any value. Here, it's set to 80,
the default value. Refer to Chapter 2.4.1.2.

After setup for EVB B/D, run web browser in the Test PC and type the URL(http://192.168.0.2/) of the EVB
B/D in the address field to connect to EVB B/D.

Source IP : 192.168.0.2
Gatewvay IP : 192.168.0.1
Subnet Mask :+ 255.255.255.0

DNS Server IP : 0.0.0.0
MAC Addr : Ox00.0x08.0xDC.0x00.0x00.¢
HEHAHAHEHBHBHBHBHBHBHBRBHAHBREREHEEH

(u] Loop-Back TCP Server Started.

1 Loop-Back TCP Client Started.

2 Loop-Back UDP Started.

9 : Web JSexver Started. € Web Server Application Log and
3 Connected by 192.168.0.30(2313) Peer Connection Information

<Fig 2.16: Web Server Test>

If web browser is successfully connected to HTTP port of EVB B/D, the Web Page of <Fig 2.17> is displayed.

In case web page of <Fig 2.20> is not shown, refresh the screen using the “Refresh” function of the web

browser.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

14

W IZnet

Control

(WiZnet

<Fig 2.17: Default Web Page of EVB B/D>

If [Control] button on the Web Page in <Fig 2.17> is clicked, it can set the network information or show the

web page that can turn on or off LEDs(D1,D2) and display rows of text on Text LCD display.

(Wiznet

Source P |192.1EiB.EIDD.DEIE

Gateway IP |l 92, 168.000.001

Subnet Mask |255.255.255.EIEIEI

OMS Server IP |EIEIEI. 000,000, oo
MaC address 0008 00C.00,00 35

Metwork Config

192,168, 000,002

r
v

LEDO @
LED 1 g

LCD & LED Config

<Fig 2.18: Web Page of EVB B/D Control>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuen s, JesN y20Ild-an3

15

@IZnet

2.4.Troubleshooting Guide

2.4.1. Ping
When you can not reach EVB B/D by Ping command,
Step 1. Check if test PC is correctly connected to EVB B/D with UTP cable?
Step 2. Check if you correctly change your test PC's network environment (IP address, Gateway,
Subnet)? If not, you should change it first as follows:
- IP address: 192.168.0.3
- Gateway address: 192.168.0.1
- Subnet Mask: 255.255.255.0
Step 3. Check if link LED of NM7010B" (left LED from rear view) is on? If it is off, check whether the UTP

cable works correctly.

2.4.2. Misc.

When the serial terminal screen remains blank even though the connection is made,
Step 1. Check the connection condition of the serial cable.
Step 2. Check if the COM port numbers of the PC and terminal program are same.
Step 3. Check if terminal’s baud rate is 57600.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

16

@IZnet

3. Programmer’s Guide

3.1.Memory Map

3.1.1. Code & Data Memory Map

Memory Map of EVB-PIC24 has Program Memory 128 Kbytes, SRAM 8Kbytes. External space (Parallel
Master Port) is divided into SRAM area and W3150A" area. Other than these, there is 4Kbytes serial

EEPROM. Various kinds of environmental variables are recorded on this EEPROM.

<Fig 3.1>, <Table 3-1> are representations of system memory map of EVB B/D.

Ox157FE

<Fig 3.1: EVB B/D Memory Map>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

OXFFFF

[enue s,Jasn ¥Zold-aA3

Pro

17V‘

@IZnet

<Table 3-1: Device MAP Definition>

Device Map Define Source Code
W3150A" | #define __ DEF_IINCHIP_MAP_BASE__ 0x8000 iiNChipl/iinchip_conf.h
#if (_DEF_IINCHIP_BUS__ == __ DEF_IINCHIP_DIRECT_MODE_)
#define COMMON_BASE __ DEF_IINCHIP_MAP_BASE___
#else
#define COMMON_BASE 0x0000
#endif
#define __ DEF_IINCHIP_MAP_TXBUF__ (COMMON_BASE + 0x4000)
#define __ DEF_IINCHIP_MAP_RXBUF__ (COMMON_BASE + 0x6000)
3.1.2. SERIAL EEPROM MAP
<Fig 3.2>, <Table 3.2> are representations of serial EEPROM Map.

Refer to “evb/config.h” and “evb/config.c.”

Addr 0 1 z 3 4 & i 7 i T A& B C D E F
SYE_
000 | 3¥3_TEST SY3_VER AUTO SY3_ANYPORT
RESET
0x20 |NET_TEST MNET_MAC MNET_ZIF MET_GWIF
030 MET_SHN NET_DM3 NET_MEMALLOC
CH_ CH_ CH_ CH_
0x60 | CH_TEET CHDEST_IFO CHDEST_IP1
TYPE_0 | FORT_O TYPE_1 | PORT_1
CH_ CH_ CH_ CH_
0G0 CHDEIT_IPZ2 CHDEIT_IP3
TY¥PE_2 PORT_2 TYPE_3 PORT_3

<Fig 3.2: Serial EEPROM Map>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

18

@IZnet

<Table 3-2: SERIAL EEPROM MAP Definition>

#define SYS_INFO 0x00
#define SYS_TEST (SYS_INFO)
System]
formation #define SYS_VER (SYS_TEST +2)
#define SYS_AUTORESET (SYS_VER + 4)
#define SYS_ANY_PORT (SYS_AUTORESET + 1)
#define NET_CONF 0x20
#define NET_TEST (NET_CONF)
#define NET_MAC (NET_TEST+2)
Network #define NET_SIP (NET_MAC + 6)
Information | #define NET_GWIP (NET_SIP + 4)
#define NET_SN (NET_GWIP + 4)
#define NET_DNS (NET_SN + 4)
#define NET_MEMALLOC (NET_DNS + 4)
#define CH_CONF 0x50
#define CH_TEST (CH_CONF)
#define CH_TYPE_0O (CH_TEST + 2)
#define CH_PORT_0 (CH_TYPE_O + 1)
#define CH_DESTIP_0 (CH_PORT_ 0+ 2)
#define CH_TYPE_1 (CH_DESTIP_0 + 4)
Channel #define CH_PORT _1 (CH_TYPE_1+1)
Information | #define CH_DESTIP_1 (CH_PORT_1+2)
#define CH_TYPE_2 (CH_DESTIP_1 + 4)
#define CH_PORT _2 (CH_TYPE_2 + 1)
#define CH_DESTIP_2 (CH_PORT_2 +2)
#define CH_TYPE_3 (CH_DESTIP_2 + 4)
#define CH_PORT _3 (CH_TYPE_3+1)
#define CH_DESTIP_3 (CH_PORT_3+2)

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

19

@IZnet

3.1.2.1. System Information

System information area is used in recording system information such as firmware version of EVB B/D.

<Table 3-3: System Information>

Name Description Default Value
SYS TEST Valid Check of System Information 0xA5A5 — Valid
Others — Invalid
SYS_VER F/W Version 0xAABBCCDD (AA.BB.CC.DD)

SYS_AUTORESET

up, Auto Reset Check

If you set any environmental variable | 0x01 — System Auto Reset

Others — No Reset

creation

SYS_ANY_PORT Use any port number at Socket | 1000 ~ 65535

System Information is accessed as SYSINFO Data Type.

<Table 3-4: SYSINFO Data Type Definition>

Type Definition

Instance

typedef struct _ SYSINFO
{

u_int test;
u_long ver;

}SYSINFO;

u_char auto_reset;
u_int any_port;

SYSINFO Sysinfo;

<Table 3-5: System Information Access Functions>

Function

Description

void set_sysinfo(SYSINFO* pSysinfo)

Save the System Information

void get_sysinfo(SYSINFO* pSysinfo)

Get the System Information

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

20

@IZnet

3.1.2.2. Network Information

Network information is used in recording Network Configuration information to be used for EVB B/D.

<Table 3-6: Network Information>

Name Description Default Value

NET_TEST Network Information Valid Check | 0xA5A5 — Valid

Others — Invalid

NET_SIP Source IP Address 0xC0 A80002 (192.168.0.2)
NET_GWIP Gateway IP Address 0xCO0 A80001 (192.168.0.1)
NET_SN Subnet Mask OXFFFFFFOO (255.255.255.0)
NET_DNS DNS Server IP Address 0x00000000 (0.0.0.0)
NET_MEMALLOC | W3150A" Memory Allocation 0x55

Network Information is accessed as NETCONF Data Type.

<Table 3-7: NETCONF Data Type Definition>

Type Definition Global Instance

Eypedef struct _NETCONF NETCONF NetConf;

u_int test;

u_char mac[6];

u_long sip;

u_long gwip;

u_long sn;

u_long dns;

u_char mem_alloc;
INETCONF;

<Table 3-8: Network Information Access Functions>

Function Description

void set_netconf(NETCONF* pNetConf) Save the Network Information
void get_netconf(NETCONF* pNetConf) Get the Network Information

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

21

@IZnet

3.1.2.3. Channel Information

Following table introduces application type of W3150A" channels.

<Table 3-9: Channel Information>

Name Description Default Value
CH_TEST Valid Check of Channel | 0XA5A5 — Valid
Information Others — Invalid
CH_TYPE_X Application Type of No. | Default - LB_ TCPS
“X” Channel NOTUSE : Not Used

DHCP_CLIENT : DHCP Client
LB_TCPS : Loopback TCP Server
LB_TCPC : Loopback TCP Client
LB_UDP : Loopback UDP
WEB_SEVER : Web Server

CH_PORT_X Source/Destination Little Endian
Port Number of No. “X” | LB_TCPS : Default Source Port, 0x5000
Channel’s LB_TCPC : Default Destination Port, 0x3000

LB_UDP : Default Source Port, 0x3000
WEB_SERVER : 80

CH_DESTIP_X Destination IP Address | 0xC0O A80003 (192.168.0.3)

of No. “X” Channel

Channel information is used for recording application type of 4 channels of W3150A".
Channel application type includes Loopback TCP Server, Loopback TCP Client, Loopback UDP, DHCP

Client, and Web Server. Channel Information is defined as APPTYPE enumeration type.

<Table 3-10: Channel Application Type>

typedef enum _APPTYPE

{
NOTUSE,
DHCP_CLIENT,
LB _TCPS,
LB TCPC,
LB_UDP,
WEB_SERVER

1APPTYPE;

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

@ IZnet

Channel information is accessed as CHCONF Data Type.

<Table 3-11: CHCONF Data Type Definition>

Type Definition Global Instance
typedef struct _CHCONF CHCONE ChConf:
{ 7

u_int test;

struct _CH_CONF

{
u_char type;
u_int port;
u_long destip;

Jch[4];

}CHCONF;

<Table 3-12: Channel Information Access Function>

Function Description
void set_chconf(CHCONF* pChConf) Save the channel information
void get_chconf(CHCONF* pChConf) Get the channel information

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

23

@ IZnet

3.2.EVB B/D Firmware

EVB B/D Firmware -EVB main()- is composed of Manage Program, Loopback Programs. Manage Program
sets up various environments for running EVB B/D. Loopback Programs tests W3150A" performance. There
are Internet applications using Internet Protocols such as DHCP, HTTP, DNS, and ICMP.

Let's look at the source list of which EVB B/D is composed and then look at each application source.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

24

@IZnet

3.2.1. Sources

<Table 3-13: EVB B/D Sources>

Classification) o
(Directory) Files Description

app ping_app.h, ping_app.c Ping Request App implementation
loopback.h, loopback.c TCP, UDP Loopback Apps implementation
webserver.h, webserver.c Webserver App implementation

mcu delay.h, delay.c Delay Function — wait_xxx()
serial.h, serial.c PIC UART control
timer.h, timer.c PIC Timer enable & disable
types.h PIC Data Type Definition

evb channel.h, channel.c Channel App Handler registration & cancellation
config.h, config.c EVB B/D Environment
evb.h, evb.c EVB B/D initialization
Icd.h, lcd.c EVB B/D Text LCD control
led.h, led.c EVB B/D LED(D1,D2) control
manage.h, manage.c Manage App

inet dhcp.h dchp.c DHCP Client Protocol
dns.h, dns.c DNS Client Protocol
httpd.h, httpd.c HTTP Protocol
ping.h, ping.c Ping Protocol

main main.h, main.c EVB B/D F/W main()

rom [webpage] EVB B/D Web Pages
romfs.h, romfs.c EVB B/D Web Pages Image
searchfile.h,searchfile.c EVB B/D Web Page control

util myprintf.h printf() for debugging
sockutil.h, sockutil.c Utilities relating Socket
util.h, util.c Utilities

iinChip iinchip_conf.h System Dependant Defintion of W3150A"
w3150a.h, w3150a.c I/O Functions of W3150A"
socket.h, socket.c Socket APIs for W3150A"

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

25

@IZnet

3.2.2. How to Compile

Sources of Chapter 3.2.1 compile in bundle after arranging SRC items.

Using MPLAB IDE, open the “EVBSs” project, and select “Make” or “Build All".

After compiling, the name is assigned at Makefile TARGET, and “Evbs.hex” assigned at FORMAT is created.
This can be loaded on PIC24.

< Table 3-14 : W3150A"'s DEFINE Option >

#define LITTLE_ENDIAN

#define _ DEF_IINCHIP_DIRECT_MODE__ 1

#define _ DEF_IINCHIP_INDIRECT_MODE__ 2

#define _ DEF_IINCHIP_BUS__ _ DEF_[INCHIP_DIRECT MODE__
/i#define __DEF_IINCHIP_BUS__ __ DEF_IINCHIP_INDIRECT _MODE__

Since EVB B/D is Little-Endian system, LITTLE_ENDIAN is used. If the target system is Big-Endian, the
defined items should be commented.
If W3150A" is intended to be used as different mode other than Direct Bus Mode, use desired Bus Mode
Define as __DEF_IINCHIP_BUS__ instead of _ DEF _IINCHIP_DIRECT_MODE__. If DEFINE OPTION of
W3150A" is changed, the sources must re-build. To re-build project, do “make clean” and “make”.
3.2.3. How to download
For downloading the hex file, we use MPLAB IDE and MPLAB ICD 2.

1) Connect ICD Cable to J1 at the PM-PIC24 or J2 at the expension board.

2) Supply the power to EVB B/D.

3) Run MPLAB IDE.

4) Choose the “MPLAB ICD 2” in “Select Programmer” menu items.

5) Click “Program target device” button.

Please refer to user’s guide of MPLAB IDE for more information.

3.2.4. EVB B/D'’s main()

If we take closer look at main(), for certain amount of time, we wait for Manage Program from RS232
Terminal after initialization of board with board reset. At this point, if RS232 terminal displays the Manage
Program entering command, EVB B/D environment such as network information and channel Information
can be set and ping request program can be run.

If Manage Program is done or there is no entering command from RS232 terminal, the application for each
of 4 channels of W3150A" is executed and initialized using previously set network information.

<Fig 3.3> process procedure of EVB B/D main(). Refer to “main/main.c”

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

26

@ IZnet

If DHCP client exists in the application, the DHCP client obtains the network information from DHCP server
by calling ‘get IP_DHCPS()’ function. If DHCP client application does not exist or fails to obtain network
information from DHCP server, the EVB B/D is initialized with previously-set network information.

After initialization, it runs test applications of EVB B/D by calling each registered application handler. For further

details on DHCP client program, refer to “ Chapter 3.2.6.5 DHCP Client.”

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

27

@IZnet

<Table 3-15: Reference Functions in EVB B/D’s main()>

Function Name Description Location
int main(void) EVB B/D main() main/main.c
void evb_init(void) PIC, Text LCD, evb/evb.c

UART initialization
void net_init(void) EVB B/D Network initialization evb/evb.c

void check_manage(void)

Manage Program action wait and

execution

evb/manage.c

void register_channel_handler

(u_char ch, void (*handler)(u_char))

Channel Application Handler registration

evb/channel.c

void unregister_channel_handler

Channel Application Handler cancellation

evb/channel.c

(u_char ch)

void init_dhcp_client(SOCKET s, void | DHCP Client Program initialization inet/dhcp.c

(*ip_update)(void),

void (*ip_conflict)(void))

u_int getlP_ DHCPS(void) Network Information acquisition from | inet/dhcp.c
DHCP Server

void check_DHCP_state(SOCKET s) Check to expire the leased time from | inet/dhcp.c
DHCP server

void loopback_tcps(u_char ch) Loopback - TCP Server app/loopback.c

void loopback_tcpc(u_char ch) Loopback - TCP Client app/loopback.c

void loopback_udp(u_char ch) Loopback - UDP app/loopback.c

void web_server(u_char ch)

Web Server Program

app/webserver.c

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

28

@Znet
main()

Initialize EVB B/D

v

Check to enter the manage mode

Unregister i-th Channel Apps Handle

Y Get MAC Addr from EEPROM

=

Set theMAC Addr to DHCP Cleint
memcpy(SRC_MAC_ADDR,NetConf.mac,6)

Initialize DHCP Client

Get a Network Info From a DHCP Server

—Success 7N

Y

ChConf[i].type = NOTUSE

Register i—th Channel Apps Handle
register_channel_handle(

)

Y Register i-th Channel Apps Handle

register_channel_handle(

)

register_channel_handle(

Register i—-th Channel Apps Handle

)

register_channel_handle(

Register i-th Channel Apps Handle

)

register_channel_handle(

Register i—-th Channel Apps Handle

)

i++ -t

Call i-th Channel Apps Handle

<Fig 3.3: EVB B/D’s main()>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

unreg

get_netc

get_|

29

@IZnet

m
3.2.5. Manage Program é
. . . . 1)
Manage Program is a program that sets up network and channel information by RS232 terminal and tests | =
N
application with Ping request to a certain destination. é
(7))
@
Running the manage program can be started by calling check_manage() from main() function. 2
. Q
check_manage() checks if there is any entering command to Manage Program from RS232 terminal, that is 3
. . . . Q
character ‘M’ or ‘m’ is input or not. If there is the command, it will enter to Manage Program through | —
manage_config(). If the user changes the configuration, the EVB B/D automatically reboots, but skips
check_manage().
START
check_manage()
Check to reset EVB B/D automatically
get_reset_flag()
. Y Clear Reset Flag
set_reset_flag(SYSTEM_MANUAL_RESET)
N
Display the Followed Console Message
“Press 'M' to enter the manager mode”
Check to Press a Key
™ uart_keyhit()
Get the pressed Key
uart0_getchar()
Wait 10ms
wait_1ms(10) B Run Manage Program
manage_config()
Y
Display
the Progressing Character(.)
-]
<Fig 3.4: check_manage()>
30

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

@IZnet

1 : Network Config
2 : Channel Config
3 : Ping App Test
F : Factory Reset
E : Exit

START
manage_config()
—><Disp|ay the Config Menu

Get the pressed Key
sel = uart0O_getchar()

Y Configure Network
bmodify |= manage_network()
N

Configure Channel
bmodify |= manage_channel() \D‘

Test Ping App
ping_request()

Load the Factory Reset Value
load_factory_netconf()
load_factory_chconf()

bmodify = 1

EVB B/D Auto Reset
evb_soft_reset()

<Fig 3.5: manage_config()>

If the EVB B/D is updated, the EVB B/D automatically reboots to apply the updated configuration.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

@IZnet

<Table 3-16: Caller Function at Manage Program >

Function Name

Description

Location

void check_manage(void)

Decides if Manage Program is executed

or not

evb/manage.c

void manage_config(void)

Manage Program

evb/manage.c

u_char manage_network(void)

Configures Network Information

evb/manage.c

u_char manage_channel(void)

Configures Channel Information

evb/manage.c

u_char get_reset_flag(void)

EVB B/D’s Auto/Manual Reset recognition
and confirm

Auto : SYSTEM_AUTO_RESET
Manual : SYSTEM_MANUAL_RESET

evb/config.h

evb/config.c

void set_reset_flag(u_char flag)

Copy of EVB B/D Reset status

evb/config.c

void load_factory netconf(void)

Factory Reset Network Information

evb/config.c

void load_factory _chconf(void)

Factory Reset Channel Information

evb/config.c

u_int uart_keyhit(u_char uart) Checking the Input from UART(0,1) mcu/serial.c
char uart0_getchar(void) Read one character from UARTO mcu/serial.c
void uartO_putchar(char c) Write one character to UARTO mcu/serial.c
void wait_1ms(u_int cnt) Delay Function mcu/delay.c

void ping_request(void)

Ping Request Test Program

app/ping_app.c

3.2.5.1. Network Configuration

Network Configuration is a sub-program of Manage Program and built with manage_network(). It's the
program that sets up network information of EVB B/D. In general, MAC Address of network information is
hardly updated after initial setup. Accordingly, MAC address setup does not provide Configuration menu such

as source IP, gateway IP, or subnet mask, but it provides hidden menu. MAC address is not changed at the

time of Factory Reset. MAC Address is updated using ‘M’ or ‘m’.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

82

@IZnet

i

a
>
A
3

ﬁi e 1TYyoLlvvulaT tlon
get_netC nElONLAsNY 1N

DISDl i
Network

w

Wm
:

Get the |
sel = vartu_get_char()

Get a Value
uartO_gets()

'?{‘2’ 5 Get a Value

uartO_gets()

N

<Fig 3.6: manage_network()>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

UBI\ S,J9sN ¥7Z01d-aA3

0 : Display C
© Source IF
2 . Gateway
3 : Subnet V
4 . DNS Sery
A Memory A
F : Hactory F
E : Bxit

Display Network Inf

display_netco

Verify
Verifiyl

Verify
Verifiy

g8

Verify

@IZnet

<Table 3-17: Reference Functions in manage_config()>

Function Name Description Location

u_char manage_network(void) Configure Network Information evb/manage.
c
void get_netconf(NETCONF* Get the previously set Network evb/config.c
pNetConf) Information
void set_netconf(NETCONF* Update the Network Information evb/config.c
pNetConf)
void display_netconf Outputs the Network Information to evb/config.c
(NETCONF* pNetConf) the terminal
Void load_factory _netconf(void) Load Factory Reset Network evb/config.c
Information

char uart0_getchar(void) Read one character from UARTO mcu/serial.c
void uartO_putchar(char c) Write one character to UARTO mcu/serial.c
int uart_gets(u_char uart, char * str, Read text lines from UART(0,1) mcu/serial.c
char bpasswordtype, int max_len)
void uart_puts(u_char uart, char * str) | Write text lines to UART(0,1) mcu/serial.c
char VerifylPAddress(char* src) Check if the string is IP Address util/sockutil.c
Unsigned long htonl Transform ordering of Long Type Data | util/sockutil.c
(unsigned long hostlong)
Unsigned long inet_addr Transform IP string into long type util/sockutil.c
(unsigned char* addr)

3.2.5.2. Channel Configuration

Channel Configuration, a sub-program of Manage Program is made of manage_config() and decides which
application to be applied for each of 4 channels of W3150A".

The application types that can be set up, are DHCP Client, Loopback TCP Server/Client, Loopback UDP, and

Web Server Program. Each channel can be set up with any one of the applications above. However, the

DHCP Client can only be supported by the first channel and its setting cannot be repeated on other channels.

TCP Server Program (LB_TCPS,WEB_SERVER) can be set repeatedly by channel and in such case the
same port can be used. Here, the number of clients is as many as the same port number. Other applications

can be set repeatedly by channel but the same port number cannot be used.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

34

@IZnet

<Table 3-18: Constraint by Application Types>

APPTYPE Repeat Port Repeat Destination IP
Setups Setup
DHCP_CLIENT X X X
O, supports all the simultaneously
LB_TCPS (0] connected clients as many as the number X
of repeated ports
LB_TCPC O X O
LB_UDP O X X
O, supports all the simultaneously
WEB_SERVER @) connected clients as many as the number X
of repeated ports

START
manage_channel()

Get the Channel Information
get_chconf(&ChConf)

v
Display A

: Display Config
: Oth Channel

: 1th Channel

: 2th Channel

: 3th Channel

: Factory Reset
T Exit

MMwWN =00

< Channel Config Menu /4

Get the pressed Key
sel = uartO_getchar()

Display Channel Information
display_chconf()

e

Select Apps Type
select_ch_app()

Factory Reset

load_factory_chconf()

Update Channel Information
set_chconf(&ChConf)

<Fig 3.7: manage_channel()>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

35

@IZnet

< Table 3-19: Reference Functions in manage_channel() >

Function Name

Description

Location

u_char manage_channel(void)

Configure channel information

evb/manage.c

void select_ch_app

(CHCONF* pChConf, u_char ch)

Select available application type and set up

required factors

evb/manage.c

void get_chconf

(CHCONF* pChConf)

Get channel information

evb/config.c

void set_chconf

Update channel information

evb/config.c

(CHCONF* pChConf)

void display_chconf Output channel information through terminal evb/config.c

(CHCONF * pChConf)

void load_factory_chconf(void) Factory reset channel information evb/config.c

char uart0_getchar(void) Read one character from UARTO mcu/serial.c

3.25.3. Ping Request Program
Ping Request Program is a program that sends Ping request to a certain destination. It uses ICMP protocol

message on IP protocol and made with ping_request().

ping_request() is created with the form similar to Ping program in DOS command prompt. It sends Ping

request to a destination after analyzing and processing the options.

Both domain name and IP address can be used as destination address for Ping request. In case of using
domain name, domain name is changed into IP address using gethostbyname() or DNS. With the changed
IP address, the Ping request is sent.

When IP address is used with ‘-a’ option, domain name can be obtained through gethostbyaddr() from DNS
Server and the Ping request is sent to the IP address. When IP address is used without the ‘-a’ option, Ping

request is sent to input IP address without the connection with DNS.

gethostbyname(), gethostbyaddr() is DNS-related functions. For further information, refer to Chapter 3.2.6.6
DNS Client. <Fig 3.8> and <Fig 3.9> are processing procedures of ping_request().

<Fig 3.8> creates tokens of inputs of Command, Option, and Option Value and decides the related Bit of
Argument Flag (PingArgsFlags).

<Fig 3.9> calls ping() based on relevant option and option after checking the validity of command, option,
and option value with bits of argument flag. ping() sends Ping request message to a certain destination and

processes the ICMP message which is received from any destination.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

36

W IZnet

ping_request()

Declare & Initialize Local variables

PINGLOG Pinglog;
char command[81];
char gname[MAX_QNAME_LEN]
char* NextTok:
char Peerlp[50];
u_long peerip:
char PingArgsFlags = 0;
int pingent, pingsize, pingtimeout:

Display the Usage of Ping
Call ping_usage()

v

—

pingcnt=pingsize=pingtimeout=0
PingArgsFlags = 0

Fi

Display the
Prompt

Get a command from
RS232 Console program

Get a First token from the command
Covert it to uppercase string

Ping
Processing

Unknown
Command

Usage : ping [-t] [-a] [-n count] [-] size] [-w timeout] destination-list
Options :
-t Ping the specified host until stopped.
To see statistics and continue - type Control-Break;
To stop - type Control-C.

-a Resolve addresses to hostnames
-ncount Number of echo requests to send.
-l size Send buffer size.

-w timeout Timeout in milliseconds to wait for each reply.

END

pingent = -1

PingArgsFlags |= 0x01

—©

PingArgsFlags |= 0x02 ‘

Y

PingArgsflags |= 0x80 ‘

A

Display the Usage of Ping
Call ping_usage()

‘ PingArgsflags |= 0x80

'

Bad Y
Option

Unknown
Option

Copy the Destination—list to gname

PingArgsFlags |= 0x20 ’ @

<Fig 3.8: ping_request()>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

8

IZnet

No Arguments

A

4
END of Processing
A

‘Convert the IP Address String into a 32-Bit Address

orrect IP Address ?

——(PingArgsFlags & 0x02) I=0

Convert the Internet IP Address into a Internet Domain Name

Call gethostbyaddr(peeip,anam)
Unknown Host
IP Address

END of Processing

Convert the Internet Domain Name into a Internet IP Address

Call gethostbyname(gname)
Unknown ¢
Host Name
END of PingArgsFlags |= 0x40
Processing ‘ IngArgsriags = Ux ‘

uccessed to Cal

‘Convert the 32-Bit Address into the IP Address String

Display the IP
Address String
N
——(PingArgsFlags & 0x42) I=0—
Display the Internet
Domain Name
y

Send the Ping Request To the destination
Call ping(&PingLog)

Fail to Ping
Request

Display the Result of Ping Request
Call DisplayPingStatistics(PinglLog)

y
END of Processing

<Fig 3.9: ping_request() — Continue>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

38

@IZnet

Let's take a brief look at Ping message before we proceed to Ping program.

Ping message has the value of ‘0’(Ping Reply) or ‘8’(Ping Request) at Type Field, and Code Field of ICMP
Message has 0. Also, Type Dependant Data Field(4Bytes) of ICMP Message can be re-defined as ID
Field(2Bytes), Sequence Number Field(2Bytes) respectively. Data Field of ICMP Message is filled with the
Ping Data to be looped back.

Finally, it calculates the checksum of ICMP header and Ping data of which the checksum fields are 0. After

the calculation, it replaces 0 checksum fields with the newly calculated values.

<Fig 3.10> is a diagramming representation of the relationship between the ICMP Message Format and the

Ping Message.

0 7 8 15 0 7 8 15
Type Code
(1Byte) (1Byte) 8or0 0
Checksum
(2Bytes) Checksum
ID
Type Dependent Data (2Bytes)
(4Bytes) Sequence Number
(2Bytes)
Data Ping Data
ICMP Message Ping Message

<Fig 3.10: ICMP Message VS Ping Message>

Checking the Ping reply to the Ping request can be done by checking if the values of ID, sequence number
and ping data field are same. In case the Ping reply does not come back in wait time, the ping can be sent
again. In such case the Ping request is sent with the sequence number incremented by 1.

Ping request message transmission and checking the Ping reply message were done by ping(). The
elements of ping() are Destination IP Address, Ping Reply Wait Time, number of Ping Requests, and Ping

Data size and received Ping Replies are analyzed and processed to fit the elements.

<Fig 3.11> is the process of ping() and Ping message is defined and used as the Data Type of <Table 3-21>.

Refer to “inet/ping.h”

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

2]

@IZnet

<Table 3-20: PINGMSG Data Type Definition>

typedef struct _PINGMSG
{
char Type; /I 0 - Ping Reply, 8 - Ping Request
char Code; Il Always 0
u_short CheckSum; /I Check sum
u_short ID; /I ldentification
u_short SegNum; /I Sequence Number
char Data[PINGBUF_LEN]; /I Ping Data
IPINGMSG;

Data field size of PINGMSG is ‘PINGBUF_LEN’ Byte. PINGBUF_LEN is defined as ‘32’. However, Data field
Max size may be ‘1472’. This is because the sending MTU of W3150A" is 1480 bytes and the sum of Code,
CheckSum, ID, and SeqNum Field Size is 8 Bytes. If we subtract 8 from 1480 we get 1472. Hence, the size
is 1472 bytes.

The results from ping() are saved in Data Type defined in <Table 3-22>.

<Table 3-21: PINGLOG Data Type Definition>

typedef struct __ PINGLOG

{
u_short CheckSumeErr;
u_short UnreachableMSG;
u_short TimeExceedMSG;
u_short UnknownMSG;
u_short ARPErr;
u_short PingRequest;
u_short PingReply;
u_short Loss;

IPINGLOG;

The saved Ping log can be output with RS232 terminal through DisplayPingStatistics() function. <Fig 3.12>

shows the process procedures of DisplayPingStatistics().

CheckSumeErr field is incremented by 1, whenever the check-sum of Ping Reply from peer is not correctly

received.

UnreachableMSG field and TimeExceedMSG field are incremented by 1 in case of receiving Unreachable

Message or Time Exceeded Message from peer or gateway.

UnknownMSG field is incremented by 1 when the unknown message is received.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

40

@ IZnet

ARPErr field is incremented by 1 whenever ARP reply is not received upon ARP request to get the Hardware

Address(MAC Address) of the peer.
PingRequest field is incremented by 1 whenever ping() sends Ping request.
PingReply field is incremented by 1 whenever Ping reply for Ping request from the peer is received.

Loss field is incremented by 1 whenever Wait Timeout is occurred because nothing gets replied to the peer

in certain period of time after sending Ping request.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

41

@IZnet

: N
[enue s,Jasn ¥Zold-aA3

~ime) Y
Y
v
Local Variable De
A S¥aValld =i 9 # -

I TINUIVI

Rema
PingRe:
PingRe
IsRec

ingRequestsegnum=

ngRegeu alpli >
v

A

T Calculate Ci

| Update |

Verify the Argum
Send|PingRec

P) i'> Ping

Suc
, N
N

PingLagLoss ++ IsReceived = 0 R

<Fig 3.11: ping()>

< Open s Socke

Display Loss

42

© Copyright 200.WIZnet Cq,, Inc. All righis reserved.
Pyng (iglng og ChecksUmErF 3

@IZnet

m
<
@isplayPingStatistics()) w
p)
Q
N
N
Display a Title g
@
-
/ <
Display the Packet Count -
(Sent, Received,Lost) gi
Display the Check
0g.CheckSumErr > 0 Sum Error Count >
" |
<.> C)isplay the Unreachable >
Message Count
N
<> Display the Time Exceeded >
Message Count
¥ |
C)isplay the ARP Error >
Count
N
Display the Receive
< Timeout Count >
N
. Display the PingReply
log.PingReply > 0 < Count >
N
< END)
<Fig 3.12: DisplayPingStatistics()>
Ping Request program is, as explained previously, a program that uses ICMP Protocol which is running on IP
Protocol. In case of using ICMP channel at W3150A", as shown in <Fig 3.11> and <Fig 3.13>, the IP protocol type
to be used must be decided. The socket must be created after calling setSn_PROTO(s, IPPROT_ICMP). IP RAW
channel must be created by calling socket() function when creating the socket. In case of closing ICMP Socket,
setSn_PROTO(s, 0x00) should be called after close(s) and clear the ICMP Flag which was previsouly set.
43

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

@IZnet

Fail to Send a Ping
Reply Packet

SendPingReply()

Declare & Initialize Local variables

SOCKET PingReplySocket;
u_int size = len;

w N size = 1452

Y

Find a Free Socket

Call getSocket(SOCK_CLOSED,S) | |

Assign the socket to PingReplySocket

Specify ICMP Protocol to the PingReplySocket
Call setSn_PROTO(PingReplySocket,IPPROTO_ICMP)

4
Create a IP RAW Socket
Call socket()

Successed to Create?

Make a PingReply Packet

pingrequest.Type = 0
pingrequest.Code = 0
pingrequest.CheckSum =0

Calculate the check sum of pingrequest

Send a Ping Reply to the specified peer
Call sendto()

Close the PingReplySocket

A

Create Error

Fail to Send

Call close(PingReplySocket)

A
Clear the ICMP Proctocol of IP RAW

A

Call setSn_PROTO(0)

A J
> RETURN

<Fig 3.13: SendPingReply()>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

44

@IZnet

<Table 3-22:

Reference Functions in ping_request()>

Function Name

Description

Location

void ping_request(void)

Ping Request program

app/ping_app.c

void ping_usage(void)

Outputs the instruction of Ping Request

app/ping_app.c

const u_char * buf, u_int len,

u_char * addr, u_int port)

destination.

program
char ping Sends Ping Request to a specific | inet/ping.c

(int count, u_int size, u_int | destination, and processes ICMP

time, u_char* addr, PINGLOG* | message received from any destination.

log)

void DisplayPingStatistics Outputs the results from ping() calling inet/ping.c
(PINGLOG log)

void setSn_PROTO Assigns IP protocol of the related socket iinChip/w3150a.c
(SOCKET s, uint8 proto)

char socket(SOCKET s, | Creates sockets related to as TCP/UDP/IP | iinChip/socket.c
u_char protocol, u_int port,

u_char flag)

void close(SOCKET s); Close the related socket iinChip/socket.c
int sendto(SOCKET s, Sends Datagram packet to a specific | iinChip/socket.c

int recvfrom(SOCKET s,
u_char * buf, u_int len,

u_char * addr, u_int * port)

Receives Datagram packet from any

destination

iinChip/socket.c

SOCKET getSocket(unsigned
char status, SOCKET start)

Searches for socket having designated

status

util/sockutil.c

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

45

@IZnet

3.2.6. Applications

It's a network application using W3150A" and includes Loopback Program, Web Server, and DHCP Client.

Application is selected by Manager Program.

3.2.6.1. Loopback TCP Server

The Loopback TCP Server program, EVB B/D works as server mode and AX1, the PC testing program works
as client mode. AX1 tries to connect to EVB B/D and if the connection is successful, AX1 transmits the data

stream through the TCP channel. EVB B/D returns back the data stream from AX1 without processing

through the TCP channel.

Loopback TCP Server Program uses loopback_tcps(), and <Fig 3.14> shows the process procedure of

loopback_tcps().

loopback_tcps()

Declare & Initialize Local Variables
u_char * data_buf = TX_BUF

Y

Check Socket Status

OCK_ESTABLISHED?
N

Close Socket

v

Create a TCP Socket

N
SOCK_CLOSED?

v

Wait a connetion with a client

'

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

getSn_SR(ch)?

» RETURN |j¢————

< Fig 3.14 : loopback_tcps() >

Get Recieved Size Y
len = len>0

) 4

Receive the Data

'

Send the Received Data

[enue s,Jasn ¥Zold-aA3

46

@IZnet

<Table 3-23: Reference Functions in loopback_tcps()>

Function Name Description Location
void loopback_tcps(u_char ch) | Loopback TCP Server program app/loopback.c
u_char socket(SOCKET s, | Create the socket iinChip/socket.c
u_char protocol, u_int port,
u_char flag)
u_char listen(SOCKET s) It puts related Socket as server mode iinChip/socket.c
u_int send(SOCKET s, Transfer the data to the connected socket. | iinChip/socket.c

const u_char * buf, u_int len)

u_int recv(SOCKET s, Receive the data to the connected socket. | iinChip/socket.c

u_char * buf, u_int len)

void disconnect(SOCKET s); Close the connection of the socket. iinChip/socket.c

If the server socket is in SOCK_CLOSED status, loopback tcps() calls socket() with the elements of
Sn_MR_TCP, Listen Port Number, and Option Flag to create TCP server socket.

The socket() function changes the socket status as SOCK_INIT regardless of the previous socket status. If
the server socket is created successfully, it's put in TCP Server Mode after calling listen() with the server
socket as the parameter. listen() makes the server socket status as listen status and maintains listen status

until any client’s connection.

At this point, when any client tries to connect to the server socket, the server socket status is changed from
“listen” to “established”. This is when the connection between Client and Server is complete and data
transfer is possible in SOCK_ESTABLISHED status.

Data is transferred using recv() and send() at the SOCK_ESTABLISHED. The data transfer here is 1-on-1
transfer between EVB B/D(The server) and AX1(The client).

In the SOCK_ESTABLISHED status if the client requests closing of the connection, the server socket status
is changed from SOCK_ESTABLISHED to SOCK_CLOSE_WAIT. In SOCK_CLOSE_WAIT status, data
communication is not possible and the server socket must be closed. In SOCK_CLOSE_WAIT status,
disconnect() is called to close socket. disconnect() changes the socket status to SOCK_CLOSED regardless

of previous socket status.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

a7

@IZnet

3.2.6.2. Loopback TCP Client

At Loopback TCP Client program, EVB B/D works in client mode and AX1, PC test program, works in server
mode. EVB B/D tries to connect to AX1 which is waiting as the server, if the connection is successful EVB
B/D receives data stream through TCP channel and then EVB B/D sends back the received data stream to

AX1 without processing.

Loopback TCP client program is created with loopback tcpc() and <Fig 3.15> is processing procedure of
loopback_tcpc().

If the client socket is in SOCK_CLOSED status, loopback_tcpc() calls socket() with the elements of
Sn_MR_TCP, Any Port Number, and Option Flag to create TCP client socket.

In creating socket here, any port number is used for get_system_any_port(). This is because connection may
be failed if it tries to connect to the same server with same port number. After successfully creating the

socket, call connect() with the elements of the client socket to connect to the AX1 server.

connect() makes the socket status into SOCK_SYNSENT and keeps the status as SOCK_SYNSENT until it
receives the authorization for connection from the server. If the connection is successful the socket status is
changed from SOCK_SYNSENT to SOCK_ESTABLISHED. In SOCK_ESTABLISHED status, the operation

is same as explained for loopback_tcps().

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

48

@IZnet

Declare & Initialize Local Variables
u_char * data_buf = TX_BUF

v

Check Socket Status

Get Recieved Size
len =

[enue s,Jasn ¥Zold-aA3

—»@IP

OCK_ESTABLISHED?
N

Receive the Data

'

Close Socket Y

Send the Received Data

'

N
SOCK_CLOSED?

Create a TCP Socket

Y

Wait a connetion with a client

g\l NITT T \\:’I l,

» RETURN |j&¢————

<Fig 3.15: loopback_tcpc()>

<Table 3-24: Reference Functions in loopback_tcpc()>

getSn_RX_RSF

Function Name

Description

Location

void loopback_tcpc(u_char ch)

Loopback TCP Client Program

app/loopback.c

u_char socket(SOCKET s,
u_char protocol, wu_int port,
u_char flag)

Related socket can be created as
TCP/UDP/IP

iinChip/socket.c

disconnec

u_char connect(SOCKET s,

u_char * addr, u_int port)

Attempts to connect to the specific

server with related socket

iinChip/socket.c

u_int send(SOCKET s,

const u_char * buf, u_int len)

Sends the data to related socket that is

in connection

iinChip/socket.c

socket(ch,S

n_MR_TC

u_int recv(SOCKET s,

u_char * buf, u_int len)

Receives the data to related socket that

is in connection

iinChip/socket.c

void disconnect(SOCKET s);

Close the related socket

iinChip/socket.c

u_int get_system_any_port(void)

Get any port number.

evb/config.c

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

connect(ch,desti

49

@IZnet

3.2.6.3. Loopback UDP

Loopback UDP Program is a program that uses unicast datagram communication of UDP protocol. It

operates same as Loopback TCP Server/Client program does. UDP communication includes unicast

datagram communication and broadcast datagram communication, and basically supports 1-to-many

communication that is used for many destinations with one channel.

Loopback UDP program uses

loopback_udp().

loopback_udp()

u_char * data_buf = TX_BUF
u_long destip =0
u_int destport =0

Declare & Initialize Local Variables

v

Check Socket Status

Get Recieved Size
len =

loopback udp() and <Fig 3-16> shows processing procedure of

A

Receive the Data

!

Send the Received Data

Create a TCP Socket

» RETURN

<Fig 3.16:

loopback_udp()>

getSn_SR(ch)

getSn_RX_RSR(ch)

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

50

@IZnet

Function Name Description Location

<Table 3-25: Reference Functions in loopback_udp()>

void loopback_udp(u_char ch) Loopback udp program app/loopback.c
u_char socket(SOCKET s, | Creates related socket as TCP/UDP/IP. | iinChip/socket.c

u_char protocol, wu_int port,

u_char flag)

u_int sendto(SOCKET s, Sends data to specific port of specific | iinChip/socket.c
const u_char * buf, u_int len, | destination of related socket

u_char * addr, u_int port)

u_int recvfrom(SOCKET s, Sends data to any port of any |iinChip/socket.c
u_char * buf, u_int len, u_char * | destination of related socket

addr, u_int * port)

void close(SOCKET s) Close related socket iinChip/socket.c

If the udp socket is in SOCK_CLOSED status, socket() is called using Sn_MR_UDP, Port Number, and
Option Flag as the elements to create the UDP socket.

UDP communication, as opposed to TCP, is a datagram communication without the requirement of
connection process. So, direct data communication is possible immediately after socket creation. After
creation of UDP socket, the udp socket status will be changed from SOCK_CLOSED to SOCK_UDP.

Here, not like TCP for data communication which uses send() and recv(), sendto() and recvfrom() are used.

This is because TCP is 1-to-1 communication method of which destination is known but UDP is 1-to-many
communication without connection procedure. sendto() sends data to the specific port of the specific
destination that is sent as an element, recvfrom() is used to receive the incoming data from temporary port.
Destination information from recvfrom() is informed to user using destip and destport which are sent as
elements.

In loopback_udp(), there is no example of using close(), but in case that the UDP communication is not

needed anymore, close() can be called always and close the udp socket.

3.2.6.4. Web Server

Web Server program is a TCP server program using HTTP protocol which is used on TCP Protocol. Before
building Web server program, message structure of HTTP protocol between Web server and Web client(Web
browser) are needed to be understood.

HTTP, which stands for Hyper Text Transfer Protocol, is a protocol used in Internet for transferring between

Web server and client browsers.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

51

@ IZnet

<Table 3-26: Web Browser’s HTTP Request Operation Procedure >

Request of Client(Web Browser)
--> URL Analysis(Transforming Domain Name to IP Address at DNS)
--> Connection to server at the other end
--> Client(Web Browser) requests document wanted from URL

--> Sending Document(Server)/Receiving Document (Client)

--> Displays received document on the browser

Web Server program analyzes method and URI(Uniform Resource Identifier) of HTTP Request message
received from web browser, and in case the related URI simply requests for web page, then the page will be
sent. If it requests an action such as CGIl(Common Gateway Interface) then it takes the action and the result

is informed in web page.

<Fig 3.17> shows HTTP message flow between web server and web client and <Table 3-28> shows

structure of HTTP message.

iy ey T =
— | HTTP Request
=B
— el < HTTP Response
Web Browser EVB B/D(Web Server)

<Fig 3.17: HTTP Message Flow>

[enue s, Jesn ¥¢old-aA3

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

@IZnet

HTTP-message = Simple-Request

<Table 3-27: HTTP Message Format>

| Simple-Response
| Full-Request
| Full-Response
Full-Request = Request-Line
*(General-Header | Request-Header | Entity-Header)
CRLF
[Entity-Body]
Full-Response = Status-Line
*((General-Header | Response-Header | Entity-Header) CRLF)

CRLF

[Entity-Body]
Request-Line = Method SP Request-URI SP HTTP-Version CRLF
Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF
Entity-Header = Allow

| Content-Encoding
| Content-Length
| Content-Type
| Expires
| Last-Modified
| extension-header
Entity-Body =*OCTET
Method ="GET"|"HEAD"|"POST" | extension-method

For further information on HTTP message, refer to RFC2616. HTTP request message varies depending on
web browser. <Table 3-29> shows the examples of HTTP message communication between Internet
Explores on Windows 2000 and EVB B/D.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

W IZnet

<Table 3-28: HTTP MESSAGE BETWEEN EVB B/D AND WEB BROWSER>

HTTP Request Message
Ex1> GET wiz_log.gif HTTP/1.1CRCF
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.-ms-
powerpoint, application/vnd.-ms-excel, application/ms-word, */*CRCF
Accept Language: koCRCF
Accept Encoding: gzip, deflateCRCF
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0; .NET CLR
1.3705)CRCF
Host: 192.168.0.2CRCF
Connection: Keep-AliveCRCF
CRCF
Ex2> GET http://192.168.0.2/LCDNLED.CGI?Icd=hi.+EVB B/D&led0=on HTTP/1.1CRCF
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.-ms-
powerpoint, application/vnd.-ms-excel, application/ms-word, */*CRCF
Accept Language: koCRCF
Accept Encoding: gzip, deflateCRCF
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0; .NET CLR
1.3705)CRCF
Host: 192.168.0.2CRCF
Connection: Keep-AliveCRCF
CRCF
HTTP Response Message
Ex1> HTTP/1.1 200 OK CRCF
Content-Type: text/htmICRCF
Content-Length: 1451CRCFCRCF
[Html Document]
Ex2> HTTP/1.1 200 OKCRCF
Content-Type: gifimageCRCF
Content-Length: 613CRCFCRCF

[GIF IMAGE]

Web Server program is composed of web_server() to manage HTTP server socket, and proc_http() to
manage HTTP message.

<Fig 3.18> is processing procedure.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuen s, JesN y20Ild-an3

54

@IZnet

S
'
weh server() 5
\ 4
ni | Variables
u_char * htto reauest = RX F 1
v v
Check Socket Status
getSn_SR(ch)
> - -
SOCK_ESTABL'ISREDY Y Get Recieved Size
? len = getSn_RX_RSR

Since web_server() is TCP server program is built in the similar way as loopback tcps() as explained in
Chapter 3.2.6.1. Difference between web_serveN and loopback_tcps() is in the data communication codes.

web_server() calls proc_http() that processes HTTP request message from web browser at

sock_EsTABLISHED of B @GKkeCLOSE_WAIT Y Close Socket
? disconnect(ch

After calling function proc_http(), it waits until the HTTP Response message about HTTP Request from web

browser, and then calls disconnect() to close theth socket.

This socket close is called Active Close and, in the case, EVB B/D,requests the close to the client first. For

your reference, Passive Closgibv&e‘% c&ﬂ@gﬁbdﬁconnection first. The reason \Qﬁl/’%li@eaeﬂ-cp SO‘

program supports Active Close is that EVB B/D supports to connection with other Sﬁfﬁ(et(Ch,Sn_M R_TCP

Wait a connetion with
listen(ch)

55
RETURN

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

IZnet

proc_http()

Declare & Initialize Local Variables
prog_char* contents
char* name, param
u_int file_len, send_len
http_response = (u_char*) TX_BUF

Analyze the HTTP request
parse_http_regeust(&request,buf)

RETURN

‘ ‘ Extract a Name in URI ‘ ‘

name = get_http_uri_name(http_request)

Y name = index.html

N

Find a type of the request
find_http_uri_type(&request.TYPE,name)

‘ ‘

Processing

Find a file in the ROMFILE
search_file(name,&content,&file_len)
Send Unknown Page
send(ERROR_HTML_PAGE)

Make the ResonseHead for the request.TYPE
make_http_response_head(http_response,reqeust.TYPE,len)

Send the HTTP Response Header
send(http_response)

RETURN file_len > 0

A

send_file = file_len

‘ send_file = TX_RX_MAX_BUF_SIZE -1 ‘

‘ Copy content To http_response ’4—

Replace System Environment Variables
send_len = replace_sys_env_value()

Send a HTTP Response Body ‘ ‘

send(http_response)

content += send_len

H

file_len -= send_len

<Fig 3.19: proc_http()>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

56

@IZnet

proc_http() calls parse_http_request() to analyses the HTTP Request message received from web browser.
If the METHOD of analyzed HTTP Request Message is “GET”, “HEAD”, or “POST", get_http_uri_name() is
called and URI Name is extracted from HTTP Request message. If extracted URI Name is “/” then replaces
URI Name “/" to “index.html” which is web server default page of EVB B/D because this means that web
browser is requesting default page of web server.

After getting the HTTP Request Type of HTTP Request Message by calling find_http_uri_type(), if HTTP

[enue s,Jasn ¥Zold-aA3

Request Type is “CGI” then it performs the related CGl command process.

After processing CGI commands or in case that HTTP Request Type is not CGl, search file with URI Name
from ROM File Image which is built in EVB B/D.

If the file is found, create HTTP Response message and send it.

HTTP Response message is composed of HTTP Response Header transmission and HTTP Response Body
transmission. For transmission of HTTP Response Header, it calls make_http_response_head() using HTTP
Request Type as the element to create HTTP Response Header. After transmitting the created HTTP
Response Header, the HTTP Response Body is transmitted. For example, if the HTTP Response body is
any file in ROM File Image, the files are much bigger than the MTU of W3150A". Hence it has to be divided
into maximum size of W3150A" before transmission. At this point, if system environment variables that are
defined in EVB B/D in HTTP Response Body are existent, it calls replace_sys env_value() and replaces

system environment variables to system environment value that was stored in EVB B/D.
<Table 3-29: System Environment Variables Usage at “evbctrl.htm|” >

<tr>

<td width="110" height="22">...Source IP</td>

<td width="240" height="27"><input name="sip" type="text" size="20" value="SRC_IP_ADDRES"></td>
</tr>
<tr>

<td width="110" height="22">...Gateway |P</td>
<td height="27"><input name="gwip" type="text" size="20" value="$GW_IP_ADDRESS$"></td>
</tr>
<tr>

<td width="110" height="22">...Subnet Mask</td>

<td height="27"><input name="sn" type="text" size="20" value="$SUB_NET__ MASK$"></td>
</tr>
<tr>

<td width="110" height="22">...DNS Server IP</td>

<td height="27"><input name="dns" type="text" size="20" value="DNS_SERVER_IP"></td>
</tr>
<tr>

<td width="110" height="22">...MAC Address</td>

<td height="27">$SRC_MAC_ADDRESS$</td>
</tr>

<Table 3-30> is part of “evbctrl.html” in ROM File Image of EVB B/D.

wkfThe length of the system environment variables is defined to fit the length of system environment value to
be replaced. For example, if Source IP Address of EVB is expressed in string the maximum is 16. Hence the
length of $SRC_IP_ADDRESSS is 16 as well. ‘ROM File System’ of EVB B/D can be created with

57

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

@IZnet

m
“ROMFileMaker.exe” provided by WIZnet. Refer to “ROM File Maker Manual Vx.x.pdf” for further é
information. %
N
N
C
HTTP Request message can be divided into Method and Request-URI by parse_http_request() and stored in 5
‘st_http_request’ Date Type which is defined in <Table 3-31>. It gets the requested URI Type with 2
get_http_uri_type(). §
Q
<Table 3-30: “st_http_request” Data>
#define MAX_URI_SIZE (2048 - sizeof(char)*2)
typedef struct _st_http_request
{
u_char METHOD; /* request method(METHOD_GET...). */
u_char TYPE; /* request type(PTYPE_HTML...). */
char URI[MAX_URI_SIZE]; /* request file name. */
}st_http_request;
Garse_http_request(D
Get a Method Token
nexttok = strtok(buf,SP)
request->method = | |request->method =| [gquest—>method =
METHOD_GET METHOD_HEAD METHOD, POST
.| Get a Request-URI Token |
| nexttok = strtok(NULL,SP) |
v ‘
request—>method =
‘@' METHOD_ERR
N v
Copy nexttok to request—>URI RETURN
<Fig 3.20: parse_http_request()>
58

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

@IZnet

find_http_uri_type()

Y Y
‘type = PTYPE_HTML‘ \ type = PTYPE_TEXT \ [type = PTYPE_FLASH | type = PTYPE_PDF
v
[type = PTYPE_GIF| \ type = PTYPE_JPEG \ \ type = PTYPE_MPEG \ ‘type = PTYPE,ERR\
L J— 4>ﬁ>
»(RETURN)=

<Fig 3.21: find_http_uri_type()>

Request-URI which is saved in URI [MAX_URI_SIZE] of st_http_request has URI Name before “?” symbol
and Query String after “?” sign. When Request-URI is transferred from Web Browser to Web Server, SP
(Space) text is transmitted in the form of ‘+' and, other Reserved Texts are transmitted in the form of
“%HEXHEX.” Accordingly, Reserved Texts in Request-URI needs to be decoded to the previous value, from
‘+’' to SP and from %HEXHEX to related ASCII vales. For the details of Request-URI decoding, refer to
RFC1738. URI name of Request-URI is extracted with get_http_uri_name().Query String of Request-URI can
include one or more ‘“variable=value” pair that has “&" as a separator. Through function

get_http_param_value() it can extract the wanted variable value in Query String.

get_http_url_name() @et_http_param_value(D
Declare & Initialize Local Variables Declare & Initialize Local Variables
char tempURI[MAX_URI_SIZE] char tempURI[MAX_URI_SIZE]
char* uri_name charx name = NULL

Copy uri to tempURI

% ‘Copy uri to tempURl‘
Get the URL name Token %
uri_name = strtok(tempURI,?) Find param_name in tempURI
% name = strstr(tempURI, param_name)

‘ Find /" in uri_name ‘ Extract the value of parma_name

name +=strlen(param_name)+1
name=strtok(name,’ & \\n\t\0”)

v

Decoding the escape characters

uri_name++

RETURN

@'
unescape_http_uri(name)
Replace + with SP
RETURN ' replacetochar(name,+,SP)

<Fig 3.22: get_http_uri_name() & get_http_parse_value()>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

59

@IZnet

CGl processing of Web Server program at EVB B/D is different from general Web Server program which is
based on OS. OS based Web Server program creates separate process to take case of communication
between processes independently. However, Web Server of EVB B/D is OS-less, so, instead of making
independent process, it calls relevant functions to deal directly with CGI processing. EVB B/D supports
“NETCONF.CGI” which updates Network Information and “LCDNLED.CGI” which controls text LCD, D1/D2
LED of EVB B/D. <Fig 3.23> and <Fig 3.24> shows CGI processing.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

60

@IZnet

Processing

Extract the value of ‘sip’
param = get_http_param_value(http_request—>uri,’sip’)

Y Update Source IP Address
NetConf.sip= htonl(inet_addr(param))

:

Extract the value of ‘gwip’
param = get_http_param_value(http_request->uri,’gwip’)

A

@> Update Gateway |IP Address
NetConf.gwip= htonl(inet_addr(param))
N

Extract the value of ‘sn’
param = get_http_param_value(http_request—>uri,’sn’)

A

Update Sbunet Mask Value
NetConf.sn= htonl(inet_addr(param))

Extract the value of ‘dns’
param = get_http_param_value(http_request—>uri,’dns’)

Update DNS Server IP Address
NetConf.dns= htonl(inet_addr(param))

Save the Network Information to EEPROM
set_netconf(&NetConf)

v

Send a CGl Success Page
send()

v

EVB B/D Auto Reset
evb_soft_reset()

END

<Fig 3.23: NETCONF.CGI Processing>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

61

@IZnet

Processing

Extract the value of ‘lcd’

[enue s,Jasn ¥Zold-aA3

Display the Value On Text LCD
*(param+16) = 0
evb_set_lcd_text(1,param)

4
Turn the D1 LED on Turn the D1 LED off

Daram = 3UL_IIWLp_pblarl _vuluu\llup_request_:

4
Turn the D2 LED on Turn the D2 LED off

Set the file name to be sent for HTTP response _
strepy(name,”evbctrl.html”) —_ _Va|ue (http_requeSt >
v

Find the uri type of the file

END

<Fig 3.24: LCDNLED.CGI Processing>

<FORM> of NETCONF.CGI is submitted in “POST"” Method. <FORM> submitted using “POST” Method is not
submitted in Query String but submitted in Entity Body of HTTP Request Message. Such Value of Parameter
for NETCONF.CGI, also, is used to extract related Parameter Value using get_http_param_value().

<FORM>of LCDNLED.CGI is submitted in “GET” Method and <FORM> submitted as “GET” Method is
submitted in Query String of Request-URI. Parameters submitted by Query String of Request-URI can also

extract Parameter Value using get_http_param_value().

param = get_http_param_value(http_requegt—>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

@IZnet

<Table 3-31: Reference Functions in web_server()>

Function Name

Description

Location

void web_server(u_char ch)

Web Server Program

app/webserver.c

void proc_http(SOCKET s,

Processes HTTP Message using related

app/webserver.c

Response Message to Real Values.

u_char * buf, int length) socket
u_int replace_sys_env_value Change Pre-defined System | app/webserver.c
(u_char* base, u_int len) Environment Variables in HTTP

(char *, char, u_long)

Message

void parse_http_request Analyzes and processes HTTP Request | inet/httpd.c
(st_http_request *, u_char *) Message and saves it in st_http_request

structure.
void find_http_uri_type Gets MIME Type of HTTP Request | inet/httpd.c
(u_char *, char *) Message.
char* get_http_uri_name Gets Request-URI Name of HTTP | inet/httpd.c
(char* uri) Request Message.
char* get_http_param_value Gets Relevant Parameter Value in | inet/httpd.c
(char* uri, char* param_name) Query String of Request-URI
void unescape_http_uri(char * | Transforms Escape Character inet/httpd.c
url)
void make_http_response_head | Creates header of HTTP Response | inet/httpd.c

u_char socket(SOCKET s,
u_char protocol, wu_int port,
u_char flag)

Creates related socket as TCP/UDP/IP

iinChip/socket.c

void listen(SOCKET s)

Puts the related socket in Server Mode

iinChip/socket.c

u_int send(SOCKET s,

const u_char * buf, u_int len)

Sends data using connected socket

iinChip/socket.c

u_int recv(SOCKET s,

u_char * buf, u_int len)

Receives data from the data from the

connected socket

iinChip/socket.c

void disconnect(SOCKET s)

Closes the connection of the socket

iinChip/socket.c

void replacetochar(char * str,

char oldchar, char newchar)

Changes the special characters in text

rows into new characters.

util/util.c

3.2.6.5. DHCP Client

[enue s,Jasn ¥Zold-aA3

DHCP Client program is a program that assigns the network information from DHCP server in the network.

Note that, If DHCP Client program must be started prior to other programs because it manages Network

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

@IZnet

Information setup. First, review basic facts on DHCP(Dynamic Host Configuration Protocol) and get further

into the usage of DHCP Client program.

DHCP uses UDP protocol in Transport Layer and communicates with DHCP server using broadcast of UDP.
The reason why broadcast is used is that DHCP server's IP address is unknown. When using UDP
broadcast at W3150A", destination IP address needs to be set '255.255.255.255’ for broadcast packet
transmission.

<Fig 3.25> is a Message Flow between DHCP Server and Client.

DISCOVER >
DHCP OFFER DHCP
CLIENT SERVER
68 Port REQUEST > 67 Port
< ACK or NACK

<Fig 3.25: DHCP Message Flow>

First of all, DHCP client broadcasts DISCOVERY message to the local Network. If DHCP server exists at the
network, DHCP server will receive Discovery message and provide network Information such as IP, G/W IP,
Subnet Mask, DNS sever IP, and information such as Lease Time to the DHCP Client as OFFER message.
DHCP Client can detect DHCP server by receiving the OFFER message and then it sends REQUEST
message to DHCP server to use the information suggested by DHCP server. After receiving REQUEST
message from DHCP Client, DHCP server finds out if the requested network information is usable. If it is, it
sends ACK message, if not, NACK message is sent to DHCP Client. After receiving ACK message from
DHCP server, DHCP Client uses the offered network Information. The network information is valid only for
the Lease Time suggested by DHCP server. Hence, if DHCP Client wants to keep using the network
information, it retransmits REQUEST message to DHCP server to maintain network information usually after
half of the Lease Time. In this process, DHCP client can get same or new network information from DHCP

server. In case that it received new network information, the new information must be used.

Message between DHCP server and client has the format as in <Fig 3.26> with the size of 544 Bytes. Refer
to document ‘RFC1541’ for detailed explanation for each field of DHCP message Format. op Field of the first
byte decides Request or Reply, and fields after ciaddr is used to deliver network information, Option field of

312 byte is used to transmit message type or the information such as Client Identifier.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

64

@IZnet

0 1516 31
op (1) htype (1) ‘ hlen (1) hops (1)
xid (4) 0 1 15 bit
8| MBZ
secs (2) flags (2) ‘
ciaddr (4) B: Leftr_nos_t _Bit
5 If this bit is set to 1, the DHCP Message SHOULD
siaddr (4) be sent as using an IP Broadcast address
4 (preferably 255.255.255.255) as the IP destination
giaddr (4) g address.
chaddr (16))t/ MBZ : Must Be ZERO (Reserved for future use)
e
sname (64) s
file (128)
options (312)
X

<Fig 3.26: DHCP Message Format>

<Table 3-32: DHCP Message Data Type>

{

u_char
u_char
u_char
u_char
u_long
u_int

u_int

u_char
u_char
u_char
u_char
u_char
u_char
u_char
u_char

IRIP_MSG;

typedef struct _RIP_MSG

op;

htype;
hlen;

hops;

xid;

Secs;

flags;
ciaddr[4];
yiaddr[4];
siaddr[4];
giaddr[4];
chaddr[16];
sname[64];
file[128];
OPT[312];

/Il DHCP_BOOTREQEUST or DHCP_BOOTREPLY
/Il DHCP_HTYPE10MB

/I DHCP_HLENETHERNET

/I DHCP_HOPS

/I DHCP_XID

/| DHCP_SECS

/I DHCP_FLAGSBROADCAST

DHCP Message of <Fig 3.26> is managed by RIP_MSG Data Type

“inet/dhcp.h”

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

defined in <Table 3-33>. Refer to

[enue s,Jasn ¥Zold-aA3

65

@IZnet

To take a brief look at the Option Field of DHCP Message, Options Field has the format of <Fig 3.27>, it
contains Magic Cookie Field, a Lease Identification Cookie with the size of 4 Byte and Code Set ranged from
Code 0 to Code 255. From Codel to Code 254, codes are composed of pairs of {Code, Len, Value}, and
Code 0 and Code 255 are composed of {Code} only. For further explanation of each code of Options Field,

refer to RFC1533.
0 7 8 15

Magic Cookie (4)

Code (1) Len (1)

Value

Code Len

Value

»w O ~+~< DN —= W

Zero Padding

<Fig 3.27: DHCP Message’s Option Field Format>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

@IZnet

<Table 3-33: DHCP Message Option Code Definition>

Code Enumeration Type Description
0 padOption used to cause subsequent fields to align on word boundaries
1 subnetMask specifies the client's subnet mask
3 routersOnSubnet a list of IP addresses for routers on the client's subnet
6 dns specifies a list of DNS servers available to the client
12 | hostName specifies the name of the client

50 | dhcpRequestediPaddr | request that a particular IP address be assigned by the server

51 | dhcplPaddrLeaseTime | alease time for the IP address

53 | dhcpMessageType used to convey the type of the DHCP message

54 | dhcpServerldentifier the IP address of the selected server

55 | dhcpParamRequest request values for specified configuration parameters
61 | dhcpClientldentifier specify client unique identifier

255 | endOption marks the end of valid information

In the Option Field of 312 Bytes, the unused bytes are denoted with 0’'s padding.
<Table 3-34> is defined as Enumeration Data Type in “inet/dhcp.h” and shows most common Option Codes

that are used in DHCP Client Program.

Other codes that are not defined in <Table 3-34> are skipped from DHCP Client Program.

The operation of DHCP Client Program is displayed in EVB B/D’s main(). Refer to <Fig 3.3: EVB B/D’s

main()>

First, set up the MAC address to be used by DHCP Client at the initialization. MAC address is unique
address for all the devices in the network. MAC address is the basic address in Network communication and
necessary for DHCP server to recognize DHCP Clients. For MAC address of DHCP Client program, it sets
up SRC_MAC_ADDR which is global variable of DHCP client using the MAC address of EVB B/D. By calling
init_dhcp_client() after setup of SRC_MAC_ADDR, it can register two functions to be called in case of

collision of the IP received from DHCP Server of renewal of the IP by DHCP Server.

When calling init_dhcp_client(), if each function is not specified, set. DHCP_network() and proc_ip_conflict()

of DHCP Client Program are registered respectively.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

67

@ IZnet

init_dhcp_client()
param : s, ip_update, ip_conflict

Assign the Socket for DHCP Client
DHCPC_SOCK = s

ip_update != NULL

Assign the User Handler for IP Update

dhcp_ip_update = ip_update

Assign the Default Handler for IP Update
dhcp_ip_update = set_DHCP_network

Assign the User Handler for IP Conflict Y 3
dhcp_ip_update = proc_ip_conflict

N

Assign the Default Handler for IP Conflict
dhcp_ip_conflict = ip_conflict

Y

4><END>

<Fig 3.28: init_dhcp_client()>

EVB B/D.

When network information is renewed or IP collision occurs, register evb_soft reset() to run auto reset for

Second, Network Information acquirement can be done through getlP_DHCPS().

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

68

@IZnet

Assign a random integer to DHCP_XID
DHCP_XID = 0x12345678

v

Initialize DHCP Client Variables
GET_SIP = 0x00000000
GET_GW_IP = 0x00000000
GET_SN_MASK = 0x00000000

Initialize iinChip™

Set iinChip™'s IP Address to 0.0.0.0

Set iinChip'™’s MAC Address

iinChip™ System Initialize

Find a DHCP Server

v

dhcp_state = STATE_DHCP_DISCOVER

Y

Reset timeout value & retry count

v

Set Timer for DHCP Client

v

iinchip_init()

‘ DHCP_Timeout = 0 ‘

Y e -
—f DHCP_Timeout == 7= Kill Timer for DHCP Client

N

Check dhcp_state RETURN Eail

<Fig 3.29: gethﬁW(SRC_MAC_ADDR)

getlP_DHCPS() initializes W3150A" by using setSIPR(),setSHAR(),and etc. It initializes ‘dhcp_state’ variable
as DHCP Client program to ‘STATE DHCP_DISCOVER'. After the initialization, it calls
send_DHCP_DISCOVER() to transfer a DHCP DISCOVERY meSY&imitp0x580x55)

After transmitting DISCOVERY DHCP message, it initializes timer variables which are the leased time of

RETURN Success

network information received from DHCP Server by calling reset. DHCP_time() and uses ‘DHCP Timer’ for 1-
sec interval using set_timer(). After initialization of DHCP_Timequt Wi o its f ssage to be

_ send JHEP 'BISEBVERD >
received from DHCP Server, as long as the ‘DHCP_WAIT_TIME' defines and, as many as it's defined at
‘MAX_DHCP_RETRY.” While waiting for ‘DHCP_WAIT_TIME & MAX_DHCP_RETRY’ time, it continuously
checks if dhcp_state is changed to STATE_ DHCP_LEASED through check_ DHCP_state().

© Copyright 2006 WIZnet Co., Inc. All rights reserved.
reset_ DHCP_time()

[enue s,Jasn ¥Zold-aA3

69

@IZnet

STATE_DHCP_LEASED state represents the network information is obtained and means that getiP_DHCP()
is done successfully. If network information is not obtained from DHCP Server during waiting time of
‘DHCP_WAIT _TIME & MAX_DHCP_RETRY’, check DHCP_state() sets DHCP_Timeout to 1. When
DHCP_Timeout is 1, getlP_ DHCPS() returns failure after releasing the DHCP Timer.

When it failed to obtain network information from DHCP server, EVB B/D sets network configuration using
default network information or previously obtained network information.

<Table 3-35> is a definition of State, Timeout , and Retry Count of DHCP Client.

<Table 3-34: DHCP Client State & Timeout Definition>

Define Description
#define STATE_DHCP_DISCOVER 1 DISCOVERY Transmission
#define STATE_DHCP_REQUEST 2 OFFER Receiving & REQUEST Transmission
#define STATE_DHCP_LEASED 3 ACK Receiving, Acquiring Network Information
#define STATE_DHCP_REREQUEST 4 | After obtaining Network Information, REQUEST

Retransmission

#define STATE_DHCP_RELEASE 5 RELEASE Transmission

#define MAX_DHCP_RETRY 3 Number of Same DHCP Message Transmission, 3
times
#define DHCP_WAIT_TIME 5 Waiting time for receiving DHCP Message, 5 sec.

At getlP_DHCP(),'DHCP_XID’ is variable to set up xid Field of DHCP message in <Fig 3.26: DHCP Message
Format>, it must be unique and maintained the same value until Lease Time of network information is
expired. DHCP_XID is fixed with ‘0x12345678’ on here, but it's recommended to use random value.

Be advised to set Source IP Address as ‘0.0.0.0." when initializing W3150A" for communication with DHCP
server. You can use any IP address to set Source IP address of W3150A" but using ‘0.0.0.0’ is better
because ‘0.0.0.0" corresponds to Class A in IPv4 addressing and it's a Null IP address that is not actually
used. For this reason, there is no chance for collision with other network.

For DHCP server to transmit UDP broadcast packet, note that Flag field MSB of DHCP message must be set
1. Refer to <Fig 3.26: DHCP Message Format>.

<Table 3-36> is a part of code that sets up Flag field

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

70

@IZnet

<Table 3-35: DHCP Message Flag Field Setup>

#define DHCP_FLAGSBROADCAST 0x8000
PRIPMSG->flags = htons(DHCP_FLAGSBROADCAST);

Third, management of Network Information obtained from DHCP server can be performed by
check_DHCP_state().<Fig 3.30> shows DHCP message flow due to DHCP client state change in the
check_DHCP_state() process.

DHCP Client DHCP Server

DHCP_DISCOVER
STATE_DHCP_DISCOVER

Receive Timeout DHCP_DISCOVER
DHCP_OFFER

STATE_DHCP_REQUEST [DHCP_REQUEST

Receive Timeout DHCP_REQUEST

STATE_DHCP_DISCOVER DHCP_DISCOVER

DHCP_OFFER

STATE_DHCP_REQUEST DHCP_REQUEST

STATE_DHCP_LEASED

After the half of leased time
DHCP_REQUEST (Unicast)

STATE_DHCP_REREQUEST

STATE_DHCP_LEASED

<Fig 3.30: DHCP Message Flow by DHCP Client State>

check_DHCP_state() checks if there is DHCP message from DHCP server, it receives and analyzes DHCP
message. By types of analyzed DHCP message, if it's DHCP message that can be receivable, it changes to

next state after it changes DHCP Client State as DHCP Message Flow of <Fig 3.30> indicates.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

@IZnet

check_DHCP_state()

Declare & Initialize Local Variables
u_int len
u_chartype =0

v

‘ ‘ len = getSn_RX_RSR(s) ‘ ‘

Receive & Analyze
type = parseDHCPMSG()

N v
Check timeout dhcp_state =
check_DHCP_Timeout() STATE_DHCP_REQUEST

Reset timeout & retry_count Check IP Conflict
reset_DHCP_time() check_leasedIP()

— o Y Broadcast DHCP_REQUEST
—Type==DHCP_OFFER— send_DHCP_REQUEST()

Y 1P Conflict ?

' N
Reset timeout & retry_count dhcp_state = Update the Network Information
reset_DHCP_time() STATE_DHCP_DISCOVER set_DHCP_network()

Check timeout END dhcp_state =
check_DHCP_Timeout() STATE_DHCP_LEASED

type =0 Broadcast DHCP_REQUEST

ghtc)_Ps ')ZSEET—S'P send_DHCP_REQUEST()

—

Y

Reset timeout & retry_count dhcp_state =
reset_DHCP_time() STATE_DHCP_REREQUEST

Update the Network Information
set_DHCP_network()

Reset timeout & retry_count
reset_DHCP_time()

Reset timeout & retry_count
reset_DHCP_time()

dhcp_state = dhcp_state =
STATE_DHCP_DISCOVER STATE_DHCP_LEASED

—STATE_DHCP_RELEA '
-

Check timeout
<Fig 3.31: check_DHCP_state()>

check_DHCP_Timeout()

S

check DHCP_state() processes correspondingly with DHCP client state through the series of processes
shown in <Fig 3.31>. If we take a look at DHCP_STATE_LEASED state at check DHCP_state(), the Lease
Time received from DHCP server is finite. In case that half of the Lease Time passed, it sends
DHCP_REQEUST Message to DHCP Server and changes it as DHCP_STATE_REREQUEST atfter it backs

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

72

@IZnet

up the source IP. As it continuously transmits DHCP_REQUEST to the server, network information is

maintained.

[enue s,Jasn ¥Zold-aA3

!
‘ |
che
i 1
v Declare &
u_char svr— retry_co
u_short svr .
DRIPMSG =yu—char*) RX_BUF
= (_ eni=t;
= type, opt_len;
— — E—»ﬁ)
-~ DHCP Message dhep_time:
recvirom(& 1ISG,svr_addr,&svr_port) nexf_ti;ne;
‘ _ F» retry:coum
- __po' — ER PO N
Y }—>
STA
—
‘ N
) DHCP_SIF = pRIPMSG->siaddr STA
_ = ->yiaddr
L GET_SIP = pRIPMSG->yiadd

<Fig 3.32: parse_ DHCPMSG() & check_DHCP_Timeout()>
parseDHCPMSG() receives DHCP message frg&[&@,ﬁzm@a&ggﬁzes type of DHCP Message, and

saves network information. When performing chpck -DR4© _state(), check_DHCP_Timeout() is called in case
that DHCP message is not received during the BHTCE’_Mﬁn_‘I%ﬁlg)or received DHCP message from DHCP
server is not expected, to retransmit DHCP message to DHCP server. If the retransmission of DHCP

p<e N RETURN 0

Y
© Copyright 2006 WIZnet Co., Inc. All rights reserved.
*p++==endOption Y RETURN type

N

@IZnet

message is repeated as much as MAX_DHCP_RETRY, it transmits DHCP_DISCOVER message to DHCP

server after it initializes all the variables to start the connection of DHCP server and DHCP message.

<Table 3-36: Reference Functions in DHCP Client>

Function Name Description Location
void init_dhcp_client(SOCKET s, Initializes DHCP Client inet/dhcp.c
void (*ip_update)(void),
void (*ip_conflict)(void))
u_int getlP_DHCPS(void) Obtains network information from | inet/dhcp.c
the server

void check_DHCP_state(SOCKET s) | Manages network information | inet/dhcp.c
obtained from DHCP Server

void set_ DHCP_network(void) Applies network information | inet/dhcp.c
obtained from DHCP server to
W3150A".

char parseDHCPMSG Analyzes and processes DHCP | inet/dhcp.c

(SOCKET s, u_int length) message

void check_DHCP_Timeout(void) Retransmits the DHCP message | inet/dhcp.c
when DHCP connection Timeout
occurs

char check_leasedIP(void) Check if the IP obtained from DHCP | inet/dhcp.c
server is faced with collision.

void reset_ DHCP_time(void) Initializes DHCP Timer related | inet/dhcp.c
variables.

void DHCP_timer_handler(void) DHCP Timer Handler inet/dhcp.c

void send_DHCP_DISCOVER Transmits DHCP_DISCOVER | inet/dhcp.c

(SOCKET s) message to DHCP server.

void send_DHCP_REQUEST Transmits DHCP_REQUEST | inet/dhcp.c

(SOCKET s) message to DHCP server.

void Transmits inet/dhcp.c

send_DHCP_RELEASE_DECLINE DHCP_DISCOVER/DHCP_DECLIN

(SOCKET s,char msgtype) E message to DHCP server

u_int init_dhcpc_ch(SOCKET s) Creates DHCP client socket. inet/dhcp.c

u_char socket(SOCKET s, Creates sockets as TCP/UDP/IP iinChip/socket.c

u_char protocol, u_int port, u_char
flag)
u_int sendto(SOCKET s, const | Transmits data through specific port | iinChip/socket.c

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

74

@IZnet

u_char * buf, u_int len, u_char * addr, | of specific Destination

u_int port)

u_int recvfrom(SOCKET s, u_char * | Receives data through any port of | iinChip/socket.c
buf, any destination.
u_int len, u_char * addr, u_int * port)

void close(SOCKET s) Closes the Socket iinChip/socket.c

3.2.6.6. DNS Client

Let’s take a brief look at the DNS(Domain Name System) before DNS Client setup is introduced.

DNS is a system that transforms Internet Domain Name to Internet IP Address or Internet IP Address to
Internet Domain Name. DNS is composed of Name Server that contains mapping table between IP Address
and Domain Name, and DNS resolver that receives query results by transmitting query to Name Server.

DNS resolver queries IP address or Domain Name to be transformed to local Name Server. Local Name
Server which received the Query searches its DB and answers back to the Resolver. If Resolver cannot find
the information, Local Name Server sends the received query to Name Server of higher layer and the

received answer can be sent to the Resolver.

Query > “_‘Query S
Local -

d
P
Name Server e \

< Answer
N

\\ /
53 Port
< Answer -

RESOLVER

(CLIENT)

<Fig 3.33: Domain Name System Structure & DNS Message Flow>

As seen in <Fig 3.33>, DNS Query and DNS Answer Message transmittable between DNS Resolver and

Name Server are composed of 5 sections in <Fig 3.34>.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

75

W IZnet

12 Bytes I Header

Variable Length I Question
A

Answer

Resource Records(RRs) .
Variable Length Authority

Additional

<Fig 3.34: DNS Message Format>

Header Section has fixed 12 Bytes length and the other 4 sections have variable lengths. Answer, Authority,
Additional Section other than Header and Question Section are called Resource Records(RRs). Each of

Header, Question, and RRs has different format.

0 7 8 15

ID

QR Opcode (4bit) AA | TC | RD | RA Z (3bit) RCODE (4bit)

QDCOUNT
12 Bytes

ANCOUNT

NSCOUNT

ARCOUNT v

<Fig 3.35: Header Section Format>

0 15
Variable
QNAME Length
QTYPE ¢ 2 Bytes
QCLASS 2 Bytes

<Fig 3.36: Question Section Format>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s, Jesn ¥¢old-aA3

76

@IZnet

NAME
Length

TYPE

|
|
:

TTL 4 Byte
RDLENGTH 2 Byte
Variable

RDDATA Length

<Fig 3.37: Recode Resources Format>

Header Section of DNS Message holds Type of Message, DNS Query Type, and count information on
variable length section.

In <Fig 3.35: Header Section Format>, QR Field gets 0 when DNS Message is a request from Resolver to
Name Server and gets 1 when it's from Name Server to Resolver. Opcode Field gets 0 when it queries
Domain Name as IP Address and gets 2 when it queries Name Server status.

QDCOUNT, ANCOUNT, NSCOUNT, and ARCOUNT Field, count information for variable length, represent
Block Count that is composed of Question, Answer, Authority, and Additional Section. Question Section is
made of Block of <Fig 3.36: Question Section Format> Recode Resources(RRs) which are Format. Answer,

Authority, and Additional Sections are composed of Block of <Fig 3.37>.

For example, if QDCOUNT is 1, ANCOUNT is 10, NSCOUNT is 10, and ARCOUNT is 10 then Question
Section is composed of Block 1 of <Fig 3.36: Question Section Format> and Answer, Authority, and
Additional Section are composed of 10 Blocks in <Fig 3.37>.

NAME of <Fig 3.37>, QNAME Filed of <Fig 3.36> and RDDATA Field also get variable lengths. QNAME and
NAME are variable length fields which are composed of <Fig 3.36> Format and they process each field.
RDDATA, variable length field, processes using the data length of RDLENGTH Field.

For further details, refer to RFC1034 and RFC1035
DNS Message is operated by Data Type defined in <Table 3-38>. Refer to “inet/dns.h”

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

77/

@IZnet

m
<
&
9
<Table 3-37: DNS Message Data Type> Q
N
[* Header Section */ g
typedef struct _DHDR @
-
u_int id; /* Identification */ =
u_char flago; 2
u_char flagl; %
u_int gdcount; /* Question count */ -
u_int ancount; /* Answer count */
u_int nscount; /* Authority (name server) count */
u_int arcount; /* Additional record count */
}DHDR;
/* Question Section */
typedef struct _QUESTION
Il char* gname; /I Variable length data
u_int qtype;
u_int qclass;
}DQST;
/* Resource Records */
typedef struct _ RESOURCE_RECORD
{
1l char* __name; /I Variable length data
u_int _type;
u_int _class;
u_long _ttl;
u_int _rdlen;
Il char* _rdata; /I Variable length data
IDRR;
DNS Resolver works based on gethostbyaddr() and gethostbyname(). gethostbyaddr() transforms Internet IP
address to Internet domain name and gethostbyname() transforms Internet domain name to Internet IP
address. gethostbyaddr() and gethostbyname() test the setup of DNS Name Server and search free channel
of W3150A" needed for connection with DNS Name Server. If free channel of W3150A" exists,
gethostbyaddr() and gethostbyname() call dns_query() with ‘BYNAME’ or ‘BYIP’ as the elements.
For examples of gethostbyaddr() and gethostbyname(), refer to Chapter 3.2.5.3 Ping Request Program.
Actual connection with DNS Name Server is performed through dns_query(), gethostbyaddr() and
gethostbyname() are reporting the result of dns_query().
<Table 3-38: Query Type Definition at dns_query()>
typedef enum _QUERYDATA{BYNAME,BYIP}QUERYDATA; /* Query type */
78

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

@IZnet

gethostbyname() gethostbyaddr()
Declare Local Variables Declare Local Variables
SOCKET s SOCKET s
Get the network information of EVB Get the network information of EVB
get_netconf(&NetConf) get_netconf(&NetConf)

DNS Server IP
Addess is not
Configued

RETURN 0
Not found a Free
Socket

Communicate with the DNS Server Communicate with the DNS Server
dns_query(s,&hostip,BYNAME) dns_query(s,&hostip,BYIP)

% N
Y
RETURN 0 RETURN 1 RETURN 0

<Fig 3.38: gethostbyaddr() & gethostbyname()>

ONS Server IP
Addess is not
Configued

Find a Free channel of W3100A
getSocket(SOCK_CLOSED)

Find a Free channel of W3100A

getSocket(SOCK_CLOSED) RETURN 0

Not found a
Free Socket

Fail to
communicate
ith the Server

Fail to
communicate
with the Server

Y
RETURN 1

dns_query() initializes the buffer that is needed for DNS inter-working and creates QNAME of Question
Section based on Query Type ‘BYNAME’, and ‘BYIP.’ If the Query Type is ‘BYNAME, that is, when querying
the Domain Name with IP Address, Domain Name can be used as QNAME without transformation.

When Query Type is ‘BYIP, that is, when querying the Domain Name with IP Address, change IP Address to
IP Address string and QNAME is used after adding “in-addr.arpa” to the changed IP Address string. After
the creation of QNAME, UDP Socket is created for DNS inter-working and DNS request message is created
by calling dns_make_query(). If DNS request message is created successfully, DNS request message is
sent to DNS name server through UDP socket. After sending DNS request message, it receives DNS
response message or waits until the waiting time is expired.

If DNS response message is received from DNS name server during waiting time, it analyzes received DNS
response message using dns_parse_response(). dns_query() returns IP address or domain name depending
on Query Type.

<Fig 3.39> is dns_query()’s process map

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

79

IZnet

dns_query()

Declare & Initialize Local Variables

int len

u_int port;

u_char response_received = 0

char* gname;

dns_buf = (u_char*) TX_BUF

get_domain_name = dns_buf + MAX_DNSMSG_SIZE
query_data = querydata

gname = domain_name

querydata == BYNAME—

Convert domain_name into Dotted Notation Format

gname += MAX_DNSMSG_SIZE
strcpy(gname,inet_ntoa(*domain_ip))
strcat(gname,".in-addr.arpa")

Create a UDP Socket for DNS

A

socket(Sn_MR_UDP)

N Create OK?

Y

Make a Query with gname
len = dns_makequery(OPQUERY ,qname)

Send the query to the DNS Server
sendto(dns_buf,dnsip,IPPORT_DOMAIN)

elapse-->0

Wait 10ms
wait_10ms(1)

getSn_RX_RSR(s) > 0

Close the socket
close(s)

reponse_received ==

Analyze the answer
dns_parse_reponse()

Receive a answer from the DNS Server
recvfrom(dns_buf)

4{ reponse_received = 1 ‘4—‘

querydata == BYNA Y

*domain_ip = get_domain_ip

Copy get_domain_name to domain_name

strcpy(domain_name, get_domain_name)

RETURN 1 -t

<Fig 3.39: dns_query()>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

80

IZnet

Header Section

C dns_makequery())

v

Declare & Initialize Local Variables

char* query = dns_buf;
u_char* domain_tok;
u_int domain_len;
u_int qtype;

u_int qclass;

query_data == BYNAME—

‘ qtype = TYPE_PTR ‘

v

‘qclass = CLASS_IN }4—

v

((u_int)query) = dns_id

query += 2

*query++ = MAKE_FLAGO()
*query++ = MAKE_FLAG1()
*((u_int)query) =1

query = dns_buf + DHDR_SIZE

Find the location of . In gname

v

\J

domain_tok = strchr(gname,’.”)

qtype = TYPE_A

v

*query++ = domain_len
memcpy(query,gname,doman_len)
gname += domain_len+1

*query += domain_len

domain_tok == NUL

*query++ =\0

((u_int)query) = qtype
query += 2

((u_int)query) = gclass
query +=2

<RETURN Query Size>

RETURN 0

<Fig 3.40: dns_makequery()>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

Question Section

[enue s,Jasn ¥Zold-aA3

81

@IZnet

dns_makequery() creates DNS Request message to be sent to DNS Name Server. Since DNS request
message can query only with Header and Question Section, RRs section is not needed to be created. If you
examine the header section creation at dns_makequery(), first, it sets ID field values as any value in DNS
message inter-working. On here, ID is set with 0x1122, and for further inter-working, the value is incremented
by 1. QR, Opcode, AA, TC, RD field are set as QR_QUERY, OP_QUERY/OP_IQUERY, 0, 0, 1 respectively

through MAKE_FLAGO(), and RA, Z, RCODE Field are set as 0, 0, 0 respectively through MAKE_FLAGL().
<Table 3-39: Constants and MACRO used in Header Section>

#define QR_QUERY 0

#define QR_RESPONSE 1

#define OP_QUERY 0 [* a standard query (QUERY) */
#define OP_IQUREY 1 /* an inverse query (IQUERY) */
#define OP_STATUS 2 [*a server status request (STATUS)*/

#define MAKE_FLAGO(qr, op, aa, tc, rd)

(((gr & 0x01) << 7) + ((op & OxOF) << 3) + ((aa & 0x01) << 2) + ((tc & 0x01) << 1) + (rd & 0x01))
#define MAKE_FLAG1(ra, z, rcode)

(((ra & 0x01) << 7) + ((z & 0x07) << 4) + (rcode & OxOF))

Since the count fields, QDCOUNT, ANCOUNT, NSCOUNT, and ARCOUNT, have only one question, each is
setas 1, 0, 0, O respectively.

Let's look at Question Section. QNAME Field is the field that sets IP address string. Domain Name and IP
address string are composed of label length of 1 byte and label of MAX 63 byte. The end of QNAME is
always set with 0 to find out the variable length of QNAME. <Fig 3.41> is actual example of transformation of

domain name “www.wiznet.co.kr” in QNAME field.

»

[0cs[w|w[woee|w[i]z[n[e]t]oe|c[o]oe|k]r o]

Label Length Label Zero Terminated

<Fig 3.41: Example of QNAME Field transformation of Question Section >

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

82

@IZnet

QTYPE Field of Question Section is set as ‘TYPE_PTR’ when it holds domain name as QNAME. When it's
IP address, it's set as ‘TYPE_A’' and QCLASS field is set as ‘CLASS_IN’ since it is included in Internet.
Table 3-40 is definition of constants that are used in QTYPE & QCLASS Fields.

<Table 3-40 : Constants Definition at QTYPE & QCLASS Field>

Definition Description
#define TYPE_A 1 The ARPA Internet
#define TYPE_NS 2 an authoritative name server
#define TYPE_MD 3 a mail destination (Obsolete - use MX)
#define TYPE_MF 4 a mail forwarder (Obsolete - use MX)
#define TYPE_CNAME 5 the canonical name for an alias
#define TYPE_SOA 6 marks the start of a zone of authority
#define TYPE_MB 7 a mailbox domain name
#define TYPE_MG 8 a mail group member
#define TYPE_MR 9 a mail rename domain name
#define TYPE_NULL 10 a null RR
#define TYPE_WKS 11 a well known service description
#define TYPE_PTR 12 a domain name pointer
#define TYPE_HINFO 13 host information
#define TYPE_MINFO 14 mailbox or mail list information
#define TYPE_MX 15 mail exchange
#define TYPE_TXT 16 text strings
#define QTYPE_AXFR 252 Arequest for a transfer of an entire zone
#define QTYPE_MAILB 253 A request for mailbox-related records
#define QTYPE_MAILA 254 Arequest for mail agent RRs
#define QTYPE_TYPE_ALL 255 Arequest for all records
#define CLASS _IN 1 Internet
#define CLASS_CS 2 CSNET class
#define CLASS _CH 3 CHAOS class
#define CLASS_HS 4 Hesiod [Dyer 87]
#define QCLASS_ANY 255 Any class

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

83

@IZnet

Gns_parse_response(D

v

Declare & Initialize Local Variables

u_inti;
DHDR dhdr;
char* cur_ptr = dns_buf;

v

‘ dhdr.id = *((u_int*)cur_ptr) ‘

dhdr.id != dns_id

dns_id++

cur_ptr +=2

dhdr.flag0 = *cur_ptr++
dhdr.flagl = *cur_ptr++

dhdr.flag0 & 0x80 == 0

Display the Error
of Response

dhdr.qdcount = *((u_int*)cur_ptr)

dhdr.ancount = *((u_int*)cur_ptr+2)
dhdr.nscount = *((u_int*)cur_ptr+4)
dhdr.arcount = *((u_int*)cur_ptr+6)

cur_ptr +=8; ¢
i < dhdr.qdcount
N

Parse the Question Section
dns_parse_question(cur_ptr)

Parse the Answer Section
dns_answer(cur_ptr)

TODO
(Unimplemented)
TODO
(Unimplemented)

i < dhdr.arcount
N
RETURN 1

<Fig 3.42: dns_parse_response()>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

@IZnet

dns_parse_response() of <Fig 3.42> analyzes response message received by DNS Name Server.
dns_parse_response() checks if it's same as request message ID that was sent to DNS Name Server and it
also checks if the message received is a response message by checking QR field of header section. If the
received message is response from DNS Name Server, the success of change is decided by checking the
RCODE field value of Header section.

<Table 3-42> is definition of constants that are used in RCODE Field.

<Table 3-41 : Constant Definition at Header Section’s RCODE Field>

Definition Description

#define RC_NO_ERROR 0 | No error condition

#define RC_FORMAT _ERROR 1 | Format error - The name server was unable to interpret
the query

#define RC_SERVER_FAIL 2 | Server failure - The name server was unable to process

this query due to a problem with the name server

#define RC_NAME_ERROR 3 | Name Error - Meaningful only for responses from an
authoritative name server, this code signifies that the

domain name referenced in the query does not exist.

#define RC_NOT_IMPL 4 Not Implemented - The name server does not support
the requested kind of query.

#define RC_REFUSED 5 Refused - The name server refuses to perform the

specified operation for policy reasons.

If the RCODE is RC_NO_ERROR, variable length sections such as Question, Answer, Authority, and
Additional Section are analyzed. Since the necessary information is set in Answer section, in this case, it's
analyzed and processed up to Answer section, and other section analysis and process are not performed. If

you need information on Authority and Addition sections, you can get them easily on your own.

Question section is processed as many as QDCOUNT of Header section by calling dns_parse_question().

Answer section is processed as many as ANCOUNT of Header xection by calling dns_parse_question().

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

85

@IZnet

i
<
3
(@)
Declare& Initialize Local Variables Declare& Initialize Local Variables §
. . C
u_intlen intlen, type)
char name[MAX_QNAME_LEN; char gname[MAX_ QNAME_LEN]; @
u_long tip)
. —— i z
Extract&convert the QNAME field In Question Sectior Q
len=parse namgname) Extract& convertthe NAME field In Answer Section g
len= parse_name(gname [
Y RETURN
NULL
N
cp +=len -
- type=*((u_int*)cp)
cp +=4 cp +=2
Extract the IP Address in cp Skip CLAS?:‘II;’BRDLENGTH
and then assign itto tip
__ x *((u_char)&tip) = *cp++
query data== BYNAME— *((uchar *)&tip) +1) = "cp++
*(((u_char)&tip) +2) = *cp++
*(((u_char)&tip) +3) = *cp++;
Extract& convertthe RDDATA field In Answer Sectiq
len= parse_nam¢g gname
len=*cp++
RETUR cp +=len
cp len=*cp++
cp +=len
Copy gname to getdomain name len= parse_name(gname)
strcpy(get_domain name gname
\ 4
RETUR
cp
cp +=20 Len = parse_nameg gname
4
_ = N Y RETUR
len = parse name(gname) @ NULL
A
cp +=len - N len ==0 Y
<Fig 3.43: dns_parse_question() & dns_answer()>
dns_parse_question() analyses and processes Question section. There is no information that actually used
in the Question Section of DNS request message, but it must be processed to get the starting position of
Answer section. Since QNAME field of Question section gets variable length, parse_name() processes
86

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

@IZnet

QNAME field to process the variable length processes and QTYPE, and QCLASS Field are skipped.

dns_answer() analyzes and processes Answer section. Answer Section is a section where transformation

actually takes effects and it performs appropriate process to TYPE Field of Answer

TYPE of Answer section has one of values from <Table 3-41 : Constants Definition at QTYPE & QCLASS
Filed> and the value comes from either TYPE_A or TYPE_PTR. In case that the Domain name is changed to
IP Address, it can get the changed IP Address from TYPE_A and if the IP Address is changed to Domain

Name, Domain Name can be obtained from TYPE_PTR. Changed Domain Name or IP Address are also

processed and extracted by parse_name().

parse_name()

d

Declare & Initialize Local Variables

u_int slen;

int clen =0;

int indirect = 0;
int nseg = 0;

slen = *cp++

Section.

clen++

Y Y

*gname = NULL ‘ gname_maxlen -= slen +1 ‘

RETURN ¢l Not Enough
clen Memory

*qname++ = *cp++

*gname++ = .

RETURN 0

nseg++

<Fig 3.44: parse_name()>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

87

@IZnet

parse_name() processes QNAME Field of Question Section or NAME, RDDATA Field of RRs Section.
QNAME, NAME, RDDATA field are mostly composed as shown in <Fig 3.41: Example of QNAME Field
transformation of Question Section >. However, it can be compressed to reduce DNS Message size.
Compression scheme is expressed in 2 Byte. If the first byte, that is, the case where the upper 2 Bits are '11,’
it means the Label is compressed. It has the offset that is composed of 1°" Byte excluding upper 2 bits and
2" Byte

This offset is Offset of DNS Message and means the actual value of Label is located by the offset from the
starting point of DNS message. When Compress Scheme tries to reuse Domain Name that was already
used in DNS Message, relevant Domain Name sets the offset that is located in DNS Message as Indirect so
that it can reduce the size of DNS Message. <Fig 3.45> is an example of Compress Scheme of DNS
Message and its application.

0 1 2 7 8 15
‘1‘1‘ Offset ‘

19

22
24
> 26
28
30

> O DO Wl
o|T|>|—|—|T

38
40 3 F DNS

42 (@) (0] Message
44 1| 1 | 20

62
641\1\ 26

90
92 0

<Fig 3.45: DNS Message Compression Scheme>

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

88

@IZnet

The example of Compression Scheme of <Fig 3.45> shows DNS Message in case of “F.ISI.LARPA”,
“FOO.FISILLARPA”, “ARPA", and ROOT. “F.ISI.LARPA” is processed in the format of <Fig 3.41: Example of

QNAME Field transformation of Question Section > with Offset 20 of DNS Message without compression.

In “FOO.F.ISI.LARPA,” since the rest except for “FOO” is same as Name which is previously processed,
“FOQ” is processed with <Fig 3.41: Example of QNAME Field transformation of Question Section > Format
without compression and the rest of names is processed by Offset 26. ROOT is the highest Domain and it's

processed with Label Length Field of 0.

parse_name(), before analysis of Name, checks if upper 2 bits of Label Length Byte are 11, if it's ‘11’ the
related Label analyzes the Label at the offset of DNS Message where the Label is located. If it's no ‘11’ then
the Label is analyzed and processed like as <Fig 3.41: Example of QNAME Field transformation of Question

Section >.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

89

@IZnet

<Table 3-42 : Reference Functions in DNS Client>

Function Name Description Location
int gethostbyaddr Changes IP Address to Domain Name | inet/dns.c
(u_long ipaddr,char* domain)
u_long gethostbyname Changes Domain Name to IP Address | inet/dns.c
(char* hostname)
u_char dns_query DNS Message Processing inet/dns.c
(SOCKET s, u_long dnsip,
u_char * domain_name,
u_long* domain_ip,

QUERYDATA querydata,

u_int elapse)

int dns_make_query Creates DNS Request Message inet/dns.c
(u_char op,char * gname)

Int dns_parse_reponse(void) Analyzes DNS Response Message inet/dns.c
u_char * dns_parse_question Analyzes Question Section of DNS | inet/dns.c
(u_char * cp) Response Message

u_char * dns_answer Answer Section of DNS Response | inet/dns.c
(u_char *cp) Message

int parse_name(char* cp,char* | Analyzes NAME Field of Question, | inet/dns.c
gname, u_int gname_maxlen) RRs Section

u_char socket(SOCKET s, u_char | Creates sockets as TCP/UDP/IP iinChip/socket.c

protocol, u_int port, u_char flag)

u_int sendto(SOCKET s,
const u_char * buf, u_int len,

u_char * addr, u_int port)

Transmits data through specific port of

specific Destination

iinChip/socket.c

u_int recvfrom(SOCKET s,
u_char * buf, u_int len, u_char *

addr, u_int * port)

Receives data through any port of any

destination.

iinChip/socket.c

void close(SOCKET s)

Closes the related Socket

iinChip/socket.c

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

90

@ IZnet

EVB-PIC24 User’s Manual

Data Bus|/:0]
Expanded Board Interface

Port Interface
J2

91

4. Hardware Designer’s Guide

4.1.Block Diagram

DC5V

DC3.3V

f =
DC3.3V
e
> 3.3V Po ~Reset Bufton Input

SystemResetT
> _.0<<>oﬁa ESET

A\

. R
- . G

—_—

-

—_—

p

. > o

| I >

DC5V IN

<Fig 4.1: EVB B/D Block Diagram>

NPUT

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

Pc

@IZnet

4.2.Block Description

EVB B/D is composed of MB-EVB-PIC(EVB Base Board) and PM-PIC24(PIC MODULE).

Following 9 blocks are components of EVB B/D.
- PM-PIC24
- NM7010B"
- LCD
- SRAM
- RS-232 Port
- Expanded Board Interface
- Power Regulator

- 3.3V Power On System Reset

4.2.1. PM-PIC24
PM-PIC24 is composed of PIC Processor, 8MHz external crystal and header for interfacing to Base
board(JP1,JP2), and ICD2(J1) Interface.

B 50.00mm |
o A
N
DEV. o=
Tool NP, 3 S
Conn. J 8 % s
(J1) o L = 3
© T
2 L 4

<Fig 4.2: PM-PIC24 MODULE Dimension>

For easy development using EVB Board, all the port pin except for OSC(RC12, RC15) are connected to MB-
EVB-PIC through module Interface(JP1,JP2). Pin description of Interface is shown in <Table 4-1: PM-PIC24

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

@IZnet

MODULE Pin Description>.

<Table 4-1: PM-PIC24 MODULE Pin Description>

PM-
PIC24
VI Pin # Pin Name Dir. Description
Header #
JP1 1,2 3.3V power input
JP1 3 PGC For development tools
JP1 45,6 RB1, RB2, RB3 I/O Port B
JP1 7 LCD_RS O LCD RS signal.
JP1 8 LCD_E O LCD E signal.
JP1 9 /INCHIP_IRQ I External interrupt pin
JP1 10, 11, 12 IWR (0] PMP bus control signal
/IRD
PMBE
JP1 13 RB8 /O | GPIO
JP1 14 DO(REO) I/O | PMP Data or PortE[0:7]
21 D7(RE7)
JP1 25 A9 I/O | PMP Address(alternatively 1/O)
31 Al5
JP1 33 /IMCLR I Reset Signal Input process generated
by EVB B/D’s Reset Switch
JP1 40, 42 LEDO, LED1 O LED output
JP1 22, 31, 32, Unused
34, 35, 36,
37, 38, 39,
41, 43, 44,
46
JP1 23, 24, 45, | GND Signal Ground
46, 47, 48,
49, 50

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

93

@IZnet

PM-
PIC24
A Pin # Pin Name Dir. Description
Header #
JP2 1,2 3.3V power input
JP2 6 SCL @] I12C Clock
JP2 7 SDA I/O I12C Data
JP2 8 RFO I/1O Port F
JP2 9 PGD For development tools
JP2 10 RF1 I/O Port F
JP2 11 TX1 @) RS-232 Tx
JP2 13 RX1 I RS-232 Rx
JP2 14,17 ~ 24 AO, Al ~ A8 (@) PMP Address(alternatively I/O)
JP2 37~ 39, 41 ~ | RDO ~ RD2, RD6 ~ I/O Port D
44 RD9
JP2 3~5,12, 15, Unused
16, 27 ~ 32,
35, 36, 40,
45 ~ 48
JP2 33 AVss AVss
JP2 34 Avdd Avdd
JP2 25, 26, 49, | GND Signal Ground
50

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

94

@ IZnet

PIC ICD2 and ICSP (J1) Pin Mapping

MCLR
WCC

GHD

PGED

PGC
NC

000000

<Table 4-2: ISP Pin Description>

SIGNAL Pin Number Description
/IMCLR 1 Reset
VCC 2 VCC
GND 3 Ground
PGD 4 Programming Data
PGC 5 Programming Clock
NC 6 Not connected

PIC ICD2 connector(J2) Pin map is same as above. Please refer to Chapter 9.3 in MPLAB ICD2 User’s
Guide.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

95

@IZnet

4.2.2. NM7010B" MODULE
NM7010B" is a network module that is composed of W3150A"(TCP/IP hardwired chip),
RTL8201CP(Ethernet PHY), and MAG-JACK(RJ45 with X'FMR).

TCP/IP,MAC protocol layer : W3150A"
Physical layer : Ethernet PHY
Connector : MAG-JACK

For details on NM7010B" MODULE, refer to “NM7010B Datasheet Vx.x.pdf”

4.2.3. LCD
LCD is used for debugging and system status display.
LCD uses CM16022AGRNNA-02 of Data Image Corporation.

Pin Description of LCD Interface (JP5) is as follows.

<Table 4-3: LCD PIN Description>

EVB B/D PIN NAME/

PIN# e N DIR. Description
1 GND / VSS Signal Ground
2 5V / VDD I LCD Power Supply
3 V0 /V0 | Voltage for LCD drive
4 LCD_RS/RS I Data/Instruction register select
5 GND / RW I Read/Write
6 LDC_E/E I Enable signal,start data read/write
7 REO / DBO I/O | Data Bus Line
14 RE7 / DB7
15 NC1/LEDA o LED Anode, power supply”
16 NC2/LEDK 0 LED Cathode,ground 0V

It uses Minimum 1.5V and Maximum 13.5V of VDD-VO0 at Specification Document of CM16022AGRNNA-02.
For details on CM16022AGRNNA-02, refer to “CM16022AGRNNA-02 Specifications” document.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

96

@IZnet

4.2.4. SRAM

SRAM, with the size of 32Kbytes, is used as external data memory of PIC.

4.2.5. RS232 Port

It's an interface for Serial USARTSs that is supported by PIC.

EVB B/D uses 9Pin DSUB male Type connector.
(PM-PIC24 use only one RS232 port.)

4.2.6. Expanded Board Interface

Expanded Board Interface is designed to be developed easily using EVB B/D. Most of the port pin of PIC24,

power and many reserved pin are connected to Expanded Board Interface.

<Table 4-4: Expanded Board Interface Pin Description>

Pin # Pin Name Dir. Description
Bus Interface
66, 34, 67,| A0, Al, A2, A3, A4, A5, | O PMP Address[0:15]
35, 68, 36, | A6, A7, A8, A9, A10,
69, 37, 70,|All, Al2, Al3, A1l4,
38, 71, 39, |Al5
73, 40, 74,
41
77,45,78,46 DO, D1, D2, D3, D4, | 1/O PMP Data Bus[0:7]
79,47,80,48 D5, D6, D7
53 /IRD o PMP Bus Read Strobe
76 PMBE PMP BUS Enable
86 /WR PMP Bus Write Strobe
81 SDA I/O I2C Bus Data Line
49 SCL 0] I2C Bus Clock Line
Port Interface
10 RB1 I/O Port B
11 RB2
12 RB3
18 RDO I/O Port D
19 RD1
20 RD2
22 RD6

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s,Jasn ¥Zold-aA3

97

W IZnet

1 RD7

84 RD8

85 RD9

90 RF1 I/O Port F

ETC

4 LED1 O LED pin

5 LED2

13 LCD_RS O LCD RS signal

14 LCD_E O LCD E signal

15 PGC Programming Clock
16 PGD Programming Data
23 /IINCHIP_IRQ I External interrupt O
33 /MCLR I Reset signal

91 TX1 (@) RS-232 signals

92 RX1 I

2, 3, 6, 17, Not Available(Do not use)
21, 25, 26,

27, 28, 29,

43, 50, 51,

52, 54, 56,

57, 58, 59,

60, 61, 75,

83, 87, 89,

93, 94

Power Interface

31,32 5V @] 5V Power Supply
63,64 3.3V o} 3.3V Power Supply
7 Avdd Avdd

8 AVss AVss

9,24,30,44, GND Ground
55,62,65,72,

82,88

Expanded Board Interface Connector, which is “PCN10BK-96S-2.54DS” of Hirose co., is a Pin Connector
96Pin Female Rightangle Type. Connector of Male Type that is mated here is “PCN10-96P-2.54DS.”

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enuei s,Jesn Zold-dA3

98

@ IZnet

4.2.7. ICD2 Port
It's an interface for ICSP & ICD that is supported by MICROCHIP.
EVB B/D uses 6Pin RJ11 connector. Please refer to Chapter 9.3 in MPLAB ICD2 User’s Guide.

4.2.8. Power Regulator
EVB B/D gets 5V DC power through power adaptor. The powers used inside the board are 5V and 3.3 V. The

regulator is LM1117MPX-3.3(U2).

4.2.9. 3.3V Power On System Reset

Manual reset and Power On Reset is implemented using RC analog circuit.

[enuei s,Jesn Zold-dA3

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

W IZnet

m
<
@
R
4.3.Schematic §
C
4.3.1. MB-EVB-PIC ®
Please refer to “MB-EVB-PIC.DSN" in the CD. 2
S
c
43.2. PM-PIC24 2
Please refer to “PM-PIC24.DSN” in the CD.
4.3.3. NM7010B*
Please refer to “NM7010B.DSN” in the CD.
100

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

W IZnet

m
<
%
0
: (@)
4.4.Parts List R
[
4.4.1. MB-EVB-PIC Parts List ®
Please refer to “MB-EVB-PIC_PARTLIST.PDF” in the CD. 2
2
[
4.4.2. PM-PIC24 Parts List =
Please refer to “PM-PIC24_PARTLIST.PDF” in the CD.
4.4.3. NM7010B"
Please refer to “NM7010B_PARTLIST.PDF” in the CD.
101

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

W IZnet

4.5.Physical Specification

45.1. Power Consumption

Power consumption of each component of EVB B/D is as in the following table.

< Table 4-5 EVB B/D Power Consumption >

Power Level MIN TYP MAX UNIT
5v - 210 - mA
3.3V - 110 - mA

Total Power consumption is 210mA X 5V = 1.5 Watt.

© Copyright 2006 WIZnet Co., Inc. All rights reserved.

[enue s, Jesn ¥¢old-aA3

102

