

Optimizing Circuit Performance

With ICAP/4's optimization feature, you can specify which parameters to change and by what percentage. When asimulation runs, the parameters are varied to try to minimize a design objective (function), which is a function (e.g., phase margin), bandwidth, etc.) that can be reduced to a scalar unit. Let's try an exercise with the goal of obtaining optimized values for all the active components with 30% tolerance so that the bandwidth is 22.45K.

- Open .. ¥spice8¥Circuits¥Optimizer¥bwopt.dwg.
- Double click on L1 in the SpiceNet schematic to bring up its property dialog.
- Select Tolerance¥Sweep¥Optimizer tab, and enter 30% for the value under the Optimize column.
- Repeat the former steps for L2, L3, L4, C1, C2, C3 and C4.
- OR simply click Next Part button and enter the values.
- Click on ICAPS icon
- Select Measurement tab, and select ofunc.
- Click on Edit Test group button.

You will see this script in the Edit Test Group window: *homeCursors;* In the Measurement Script field: vsignal = db(v(5))thereas max(usignal)

themax = max(vsignal)
movecursorright(0, vsignal, themax)
fmax = getcursorx(0)
setcursor(1, fmax)
movecursorright(1, vsignal, themax-3)
movecursorleft(0, vsignal, themax-3)
bandwidth = getcursorx(1)getcursorx(0)
ofunc = bandwidth-22.45e3
ofunc = ofunc*ofunc
print ofunc

These scripts can be modified according to your needs. All measurements such as min, max, rms, pk_pk, etc. are Measured between the default cursors, cursor 0 and 1. The other cursors are for labeling and measuring delta values.

Click the OK button to close the Edit Test Group dialog.
Select Main tab, and select Test Configuration "Config 1 and Setup1." Select the Optimize2 simulation template mode and Interactive Data Reduction mode. Check script and Save Data From, All.

• Click on the Simulation Selections button.

Test Confiduration	Setup	OK-
Conne 1 + Setup 1	Farte	Help
	Results	Test Design
	Simulate Selections	
	Alam	Fædt (nore)
Mode C Standard Monte Carle C Faultz C Faultz Advanced Setue Options	- Dets Reduction C Dresoctive C Botch Soviet Script Soviet Pots From- (* All C Text points Nodes + test points	

All the modified simulation parameters and parameter changes that give the bestval are shown in the Output dialog. The results also can be viewed in tabular form at the end of the .OUT file.

From Output dialog	From .Out file			
a Durbut	########## optimized results	##########		
acjective Witcion 322,48756 SM : 11:inductance 750.0397370 : 12:inductance 7224835800M : 12:inductance 722483580M : 12:2105714N : 13:2815714N : 14:2815714N : 14:2815714N : 14:2815714N : 15:2815714N : 15:28157	11: inductance c1: capacitance 12: inductance c2: capacitance 13: inductance c3: capacitance 14: inductance c4: capacitance	750.099797U 22.9829807U 75.2493580M 182.815714N 850.395196U 18.8225708U 116.541626M 136.000129N		
: I4: inductance 116.541628M :	ac analysis measurements			
136.000129N :	test 1 ofunc ofunc = 3.224879e-001			
	Total run time: 12.716 seconds	з.		

Recommended values

.4	5k	(bandwidth .
In	ce	Sector sector sector
8	2	hold to hold to the
•	×	750:1000000
	1	22.99131410
s.	98	.75.2500000M
3	æ	182.815707N
8	S.;	850:457452U
8	8	18.82187500
8	8	116,543750M
8	æ	135.998884N
	.4	.45k

Compare the optimized values with the recommended values listed on the schematic, you will see these two results should be almost the same.

