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CHAPTER

1
Using Gds2Mesh

The Gds2Mesh tool constructs 3D device models from planar mask layouts, ac-
cording to a set of process rules and process parameters, and large through extrud-
ing 2D graphs to 3D objects.

In this chapter, the basic procedures of using the Gds2Mesh tool is described,
using the examples shipped in the software package.

The GUI Quick Start
A simple GUI is provided for beginners to access the Gds2Mesh tool.The main
window of the GUI is shown in Figure 1.1, p. 1.

Figure 1.1 Main window of the Gds2Mesh GUI.

To construct a device model, four pieces of information are needed:
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• A set of process rules.
• Process parameters.
• A mask layout.
• A mask layer map.

One can easily identify the corresponding GUI controls in the main window for
inputting the above information.

Process Rules Process rules are central to Gds2Mesh, as they define how 3D objects are con-
structed from 2D graphs, how doping profiles are placed, and the mesh constraints.

Some process rules are pre-loaded. For example, three demo CMOS process rules
are pre-loaded.

One can also load process rules from files. For example, one could load the demo
PN diode process from the file examples/diode.py.

Each process rule is a Python class extended from the class ProcessBase, which
an advanced user may want to check out in the file lib/ProcessDesc.py.

Multiple processes can be loaded at any time, but only one is used for creating
a device structure. One can select the current process rule in the drop-down list,
along with the corresponding process parameters.

Process
Parameters

Each process is argumented by a set of parameters. The bottom half of the main
window displays the list of parameters, with a short description for each of them.
Editing the parameters to affect how the device model is built.

Gdsii Masks One can load a mask file in Gdsii format. In our example, the file examples/inv_x1.gds
(Figure 1.2, p. 3) is loaded. Since the GDSII format does not in itself specify the
meaning of the numeric layer numbers, one need to select a layer map from the
drop-down list.

One can select the Mask Graph tab in the main window, to view the graphs in the
mask layout, as shown in Figure 1.3, p. 3. All layers are listed in the left, and in
the right, the graphs in the selected layers are displayed.

Different process rules may require different sets of mask layers. The demo CMOS
process, for examples, requires the layers named N_WELL, P_WELL, ACTIVE, POLY,
etc. The mask layout in the example GDSII files are designed with the MOSIS
design rule, and the MOSIS layer map is pre-loaded. One just select this layer
map in the drop-down list.

One can load other layer maps from .py files containing classes extended from
the class MaskBase.
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Figure 1.2 Mask layout of the inverter.

Figure 1.3 Viewing graphs load from a Gdsii mask file.

Generated
Structure

One clicks the Generate Mesh button to build the device structure and mesh it.
The generated mesh is saved to inv_x1.tif3d, and we can use VisualTCAD to
examine it, as shown in Figure 1.4, p. 4. The correspondence between the mask
and the generated mesh structure is apparent.
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Figure 1.4 Inverter structure generated by Gds2Mesh with the demo script.

If one hides the oxide region in the display, the inverter circuit with one n-channel
and one p-channel transistors becomes apparent in Figure 1.5, p. 4. One also
notes that mesh density is high in the active region, and sparse in the substrate,
passivation oxide and metal regions.

Figure 1.5 Inverter structure with oxide region stripped.
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The acceptor doping profile is displayed in Figure 1.6, p. 5, around the pMOSFET
region.

Figure 1.6 Doping profile of the inverter structure.

One also observes the rounding of STI corners, and the high-quality, adaptive
tetrahedral mesh, which Gds2Mesh is capable of.

Simple
Polygon Masks

Apart from loading a GDSII mask layout, one can define simple masks with poly-
gon items. One can click the Design a Mask button in the main window to open
the mask editing dialog window, as in Figure 1.7, p. 6.

Each mask layout consists of a set of graph items. Three types of items are cur-
rently supported: Rectangle, Circle and Polygon. Each type of item has several
parameters to describe the position and shape.

Each item is assigned a layer name, and all items with the same layer name are
combined by addition (union operation of the graph boolean algebra).

One can save these simple masks to files, and load them later. In the meanwhile,
the simple "pickle" format is used (.pkl), but could be replaced by some more
proper data format later.

In the main window, instead of loading GDSII mask files, one can load the .pkl
mask files (Figure 1.8, p. 6). One also needs to select the layer map called Sim-
pleMask, for these simple masks.
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Figure 1.7 Editing an item in a simple mask.

Figure 1.8 Viewing graphs of the created simple mask.

In the preceding section, we have introduced the basic procedure of using the
Gds2Mesh GUI. Since the Gds2Mesh tool is centered around the process rules
written in Python scripts, it is necessary for advanced users to understand how the
scripts work. In the next section, we give an overview on using the tool through
the scripts.
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The Demo Script
Gds2mesh is driven by scripts written in Python programming language. Exam-
ples of the driver scripts are included in the /opt/cogenda/gds2mesh/examples/
directory. To try out the examples, one makes a copy of that directory, and in that
directory enters the following command

$ /opt/cogenda/gds2mesh/bin/gds2mesh demo.py

where demo.py is the name of the script file, residing in this directory. The fol-
lowing output showed up in the terminal

Screen output

$ /opt/cogenda/gds2mesh/bin/gds2mesh demo.py
lmd 0.055 Design rule length unit lambda (um)
Tsub 1.2 Thickness of the substrate region (um)
TSTI 0.3 Depth of the STI trench (um)
Tox 0.0032 Thickness of the gate oxide

Tpoly 0.2 Thickness of the poly-silicon gate
TILD 0.6 Thickness of the ILD dielectric (um)
TM1 0.4 Thickness of Metal 1 (um)

off_spc 0.06 offset for deep source/drain implant, measured
from poly edge (um)

off_pkt -0.04 offset for pocket implant, measured from poly
edge (um)

Nsub 1e+16 Doping concentration in p-type substrate (cm^-3)
Nwel_n 2e+18 Well doping concentration (acceptor) for nMOS

(cm^-3)
Rmax_wel_n 0.25 Rmax of well doping for nMOS (um)
.
.
.
SwapImprove2
ImproveMesh
Mesh has 118759 points and 690153 elements
Writing TIF3D file...inv_x1.tif3d
writing mesh nodes
writing faces
writing elements
writing regions
writing boundaries
writing profiles
******************************************************************
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Driving Script To understand how the demo script works, let us examine its content.

Program listing of the demo script.

1from CGD013 import *
2
3# default parameters for .13 CMOS process
4params = CMOS013.Params()
5
6# optionally we change some of the parameters
7#params.setParam('Nsub', 6e15)
8
9print params

10
11# create a device structure using the .13 CMOS process
12device = CMOS013(params)
13
14fname = 'inv_x1'
15# load GDSII mask data
16device.setMask(MosisCMOSMask(fname+'.gds'))
17
18# get the list of IO pads in the layout
19print device.getIOPadList()
20
21# optionally, set the IO pads we want to build.
22# Otherwise, all possible IO pads are built.
23#device.setIOPadList(['i_20','nq_40'])
24
25# build geometry and doping profile
26device.buildDevice()
27
28# create mesh
29device.doMesh(0.3)
30
31# save mesh in .tif3d format, to be simulated by Genius
32device.save(fname+'.tif3d')

In line 14-16, one sees that the mask layout file inv_x1.gds is loaded. The mask
drawing of the inverter is shown in Figure 1.2, p. 3.

One first load the necessary libraries, which should be present at the beginning of
every Gds2Mesh script. The libraries are located in /opt/cogenda/gds2mesh/lib.
The library CGD013 contains the fabrication process parameters and the proce-
dures of building the mesh structure for the demo 0.13 μm CMOS process.
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from CGD013 import *

We create a default parameter set, and optionally change some of the parameters.
The full list of parameters, including a short description, is printed to terminal, as
we have seen earlier. A device structure is created using this CMOS013 process.

# default parameters for .13 CMOS process
params = CMOS013.Params()

# optionally we change some of the parameters
#params.setParam('Nsub', 6e15)

print params

device = CMOS013(params)

Subsequently, we load the design from a mask file inv_x1.gds. The geometric
objects in GDSII files are organized with numeric layer numbers. In order to
assign meaning to these layers, a layer map must be used. In this case, the Mosis
layer map is used.

fname = 'inv_x1'
# load GDSII mask data
device.setMask(MosisCMOSMask(fname+'.gds'))

The mask layout contains a set of IO pads, which will become contact terminals
in TCAD simulation. One can optionally choose to use a selected list of IO pads,
otherwise all of them are used.

print device.getIOPadList()
#device.setIOPadList(['i_20','nq_40'])

Finally, one builds the device structure, generate mesh of it, and save it to disk in
the TIF3D format. Both Genius and VisualTCAD is capable of importing device
structures in this format.

device.buildDevice()
device.doMesh(0.3)
device.save(fname+'.tif3d')

One notes that the impurity doping profile is placed in the CGD013 library, not in
the driver script.
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Further Examples The demo script is able to generate any circuit cell with the same CMOS process,
given the appropriate mask layout. By changing the GdsII file names in the script,
one can also generate the NAND gate and half-adder structure.

The script sram.py contains example of hand-crafted mask layout of an SRAM
cell, also using the CMOS013 process. The nmos013.py script, on the other
hand, does not use the ready-made process library. Instead, all geometry defi-
nition, profile placement, and mesh refinement instructions are contained in the
driver script itself. The SRAM structure is shown in Figure 1.9, p. 10.

In principle, Gds2Mesh is able to construct models of any circuit blocks fabri-
cated with planar processes, as long as a suitable mask layout (GdsII file) and
a process library (similar to CMOS013) is present. For examples, the pharosc
project (http://www.vlsitechnology.org) provides several free standard cell libraries,
which have all been tested in Gds2Mesh.

Figure 1.9 Generated SRAM structure.
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Simulate Generated Structure in Genius
Genius and VisualTCAD with version 1.7.0 and above are capable of simulating
device structures generated by Gds2Mesh.

The following input deck loads in the inverter we generated in the last section, and
simulates its transient switching characteristics.

Program listing of the Genius input deck for the inverter.

1#-----------------------------------------------------
2# GENIUS 3D inverter example
3# Need about 1.5h by XEON 5410 CPU (4 core)
4#-----------------------------------------------------
5
6GLOBAL T=300 Doping=1e21 ResistiveMetal=true
7
8# Load 3D inverter
9IMPORT TIF3D=inv_x1.tif3d

10
11# set electrical pad
12BOUNDARY ID=i_10 Type=solderpad Res=100 Cap=1e-15
13BOUNDARY ID=nq_40 Type=solderpad Res=1e6 Cap=1e-15
14BOUNDARY ID=vss Type=solderpad Res=10 Cap=1e-13
15BOUNDARY ID=vdd Type=solderpad Res=10 Cap=1e-13
16BOUNDARY ID=Sub Type=ohmic
17
18
19# set electrical power and signals used by simulation
20VSOURCE ID=VCC Type=VDC Vconst=1.2
21VSOURCE ID=GND Type=VDC Vconst=0.0
22VSOURCE ID=VIN Type=VPulse Tdelay=0.1e-9 V1=0 V2=1.2 \
23TR=0.1e-9 PW=0.9e-9 TF=0.1e-9 PR=2e-9
24
25# use poisson solver to get an approximate initial guess
26METHOD Type=Poisson LS=GMRES PC=ASM
27SOLVE
28
29# set physical parameters
30PMI Region=active_1 Type=mob model=HP
31PMI Region=active_2 Type=mob model=HP
32# disable high field mob in well/substrate region
33MODEL Region=active_0 H.Mob=false
34MODEL Region=sub H.Mob=false
35
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36# solve equilibrium state
37METHOD Type=DDML1 NS=Newton LS=MUMPS damping=potential \
38toler.relax=1e6 relative.tol=1e-4
39SOLVE Type=equ
40EXPORT CGNS=inv_x1.cgns VTK=inv_x1.vtu
41
42# ramp-up vdd
43SOLVE Type=DC VScan=vdd Vstart=0 Vstep=0.1 Vstop=1.2
44EXPORT CGNS=inv_x1.bias.cgns VTK=inv_x1.bias.vtu
45# after vdd ramp-up, attach const voltage source to Vdd electrode
46ATTACH Electrode=vdd Vapp=VCC
47
48# do transient simulation with input pulse
49ATTACH Electrode=i_10 Vapp=VIN
50METHOD Type=DDML1 NS=Newton LS=MUMPS maxit=8 \
51toler.relax=1e6 relative.tol=1e-4
52HOOK Load=vtk # export vtk file at each time step
53SOLVE Type=tran tstart=1e-12 tstep=10e-12 tstepmax=0.2e-9 tstop=2e-9 \
54Vstepmax=0.1 out.prefix=inv_switch
55
56END

While it is not the purpose of this document to explain the simulation detail, a few
commands in the input deck must be highlighted.

In the GLOBAL command, one has to enable the ResistiveMetal option, intro-
duced in the 1.7.0 version, for Genius to work with the generated structure. In
the ResistiveMetal mode, metal regions has finite resistivity, and RC delay is
included in the simulation.

GLOBAL T=300 Doping=1e21 ResistiveMetal=true
IMPORT TIF3D=inv_x1.tif3d

The IO pads of the circuit were labelled faces on the face of metal regions. These
boundaries must be labelled as of the SolderPad type. The input terminal is
i_10, and a load resistor is attached to the output terminal nq_40.

BOUNDARY ID=i_10 Type=solderpad Res=100 Cap=1e-15
BOUNDARY ID=nq_40 Type=solderpad Res=1e6 Cap=1e-15
BOUNDARY ID=vss Type=solderpad Res=10 Cap=1e-13
BOUNDARY ID=vdd Type=solderpad Res=10 Cap=1e-13
BOUNDARY ID=Sub Type=ohmic
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This input deck simulates first ramps up the power supplies in DC sweep mode,
then simulates a cycle of switches of the inverter in transient mode. The simulated
wave fronts of the input and output terminal are shown in Figure 1.10, p. 13.

Figure 1.10 Switching Waveform of the inverter.
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CHAPTER

2
Features of Gds2Mesh

2D Graphs
The class SimplePolygonGraph provides facilities to create and manipulate 2D
polygon graphs.

Graphs can be constructed from polygons, as shown in Figure 2.1, p. 15. Graphs
can have holes, and can be constructed from polygons, too.

(a) A simple graph with two polygons

(b) A graph with one hole.
Figure 2.1 Examples of graphs constructed from polygons.

Boolean operations of graphs are supported. Please see “Class SimplePolygon-
Graph”, p. 47 for documentation on the class.

Another operation for graph is offsetting, as shown in Figure 2.2, p. 16. Positive
offset means expanding the graph, while negative offset mean shrinking. The
edges of the offsetted graph are parallel to the corresponding edges of the original
graph. If the graph contains holes, positively offsetting the graph will increase the
area of the graph, by growing the outline while shrinking the hole.
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Figure 2.2 Offsetting a graph.
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Create 3D Objects by Extrusion
The main mechanism to create 3D objects from 2D graphs in Gds2Mesh is by
extrusion.

One starts from a 2D graph in the x-y plane, and raise it vertically in the z-di-
rection. Side faces are then added to form a closed 3D object, as illustrated in
Figure 2.3, p. 17.

2D Graph Graph in x-y plane 

E
xt

ru
de

 in
 z

-d
ire

ct
io

n 

3D objects 

Figure 2.3 Basic extrusion operation.

As one raise the graph in the z-direction, one can offset the graph. Side faces
become slanted in this case, as shown in Figure 2.4, p. 17.

extrusion 

orig. graph offset graph 

Figure 2.4 Extrusion with offsetting.

Figure 2.5, p. 18 illustrates building a hemisphere by extrusion with offsetting.
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orig. graph offset graph 

extrusion 

Figure 2.5 Hemisphere built with extrusion.

Holes in 2D graphs become holes in the 3D objects after extrusion, as shown in
Figure 2.6, p. 18.

hole 

original graph at bottom 

offset graph at top 

extrusion 

shrink 

Figure 2.6 Extrusion of graphs with holes.

One uses the ExtrudedPolygonNG class to creates 3D objects from extrusion,
which is documented in “Class ExtrudedPolygonNG”, p. 57.
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Doping Functions
Doping profiles can be introduced into the device structure with the structure.add_profile()
function, which emulates the ion implantation processes. One defines a mask win-
dow through which ion beams enters the device, as shown in Figure 2.7, p. 19.

Figure 2.7 Implantation through a mask window.

Ion implantation is emulated for each ion beam, in the range/lateral coordinates
system illustrated in Figure 2.8, p. 19. The mask is always planar in the x-y plane,
at coordinate 𝑧 = 𝑧0. The beams enters with inclination and azimuth angles θand
ϕ, respectively.

Figure 2.8 Implantation coordinates, with reference plane 𝑧 = 𝑧0, range unit vector 𝑟 and lateral
unit vector 𝑙.
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Each ion beam contribute a doping profile depicted in Figure 2.9, p. 20 to the de-
vice structure. The doping function has a lateral and a range component. The lat-
eral component is a radially symmetrical gaussian distribution with characterisitic
length 𝐿𝑙. The range component can be either a modified gaussian distribution (as
in Figure 2.9, p. 20) or an erfc distribution, with characterisitic length 𝐿𝑟.

Figure 2.9 Distribution function

As many ion beams go through the mask parallel to each other, the accumulated
doping profile follows the erfc profile illustrated in Figure 2.10, p. 21. The edges
of the mask window coincide with the width at half-maximum of the lateral dis-
tribution.
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Figure 2.10 Integral of doping function in the lateral direction.
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CHAPTER

3
Defining Process Rules

In this chapter, we describe aspects about creating a process rule for creating de-
vice models.

Example Diode Process
We build a PN-junction diode in this section with a custom process rule. The
structure of the diode is shown in Figure 3.1, p. 23.

Figure 3.1 Diagram of the PN-junction diode.

Process Script

The process rule building this diodes is listed below. We shall go through the
example line-by-line.

Program listing of the demo script.

1__all__=['DiodeProcess']
2
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3from ProcessDesc import *
4
5class DiodeParams(ParameterSet):
6'''Parameters for a demo diode process'''
7def __init__(self):
8super(DiodeParams, self).__init__()
9self.params = [

10('Nsub', 1e16, 'P-type substrate doping (cm^-3)'),
11('Ndiff', 1e20, 'Peak doping of the N+ diffusion (cm^-3)'),
12('Rmax', 0.10, 'Rmax of the diffusion (um)'),
13('Rmin', 0.10, 'Rmin of the diffusion (um)'),
14('Ll', 0.07, 'Lateral char. length of the diffusion (um)'),
15('Lr', 0.07, 'Vertical char. length of the diffusion (um)'),
16('Tsub', 1.00, 'Substrate thickness (um)'),
17('Tox', 0.30, 'Oxide passivation thickness (um)'),
18('Tmetal', 0.20, 'Metal thickness (um)'),
19('msz_sub', 0.20, 'Mesh size in substrate (um)'),
20('msz_active', 0.05, 'Mesh size in diffusion region (um)'),
21]
22
23class DiodeProcess(ProcessBase):
24'''Demo diode process. We need masks: SUB ACTIVE METAL'''
25
26Params = DiodeParams
27
28def __init__(self, params):
29super(DiodeProcess, self).__init__(params)
30
31
32def buildDevice(self):
33params = self.params
34msz_sub, msz_active = params.getParams(['msz_sub', 'msz_active'])
35Tsub, Tox, Tmetal = params.getParams(['Tsub', 'Tox', 'Tmetal'])
36
37g_sub = self.mask.getLayer('SUB')
38g_active = self.mask.getLayer('ACTIVE')
39g_metal = self.mask.getLayer('METAL')
40
41# Substrate
42obj = Extrusion(g_sub, -Tsub, 0.)
43self.device.add_object(obj, 'sub', 'Si', '', 'bottom', msz_sub)
44
45# Metal plug
46obj = Extrusion(g_active, 0., Tox)
47self.device.add_object(obj, 'contact', 'Al', '', '', msz_sub)
48
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49# Metal
50obj = Extrusion(g_metal, Tox, Tox+Tmetal)
51self.device.add_object(obj, 'metal', 'Al', 'top', '', msz_sub)
52
53# oxide passivation
54obj = Extrusion(g_sub, 0.0, Tox)
55self.device.set_fill_object(obj, "ox", "SiO2")
56
57# doping
58Nsub, Ndiff, Rmax, Rmin, Ll, Lr = \
59params.getParams(['Nsub', 'Ndiff', 'Rmax', 'Rmin', 'Ll', 'Lr'])
60
61prf = PlanarUniformProfile(g_sub, -Tsub, 0., "Acceptor", Nsub)
62self.device.add_profile(prf)
63
64prf = PlanarAnalyticProfile(g_active, 0.0, Rmin, Rmax, \
65"Donor", Ndiff, Lr, Ll, \
66PlanarAnalyticProfile.GAUSSIAN)
67self.device.add_profile(prf)
68
69# mesh size
70self.device.add_mesh_size_control(g_sub, -0.1, msz_active)
71self.device.add_mesh_size_control(g_sub, 0.0, msz_active)

Line 1 lists the process rule classes that will be exported by this script, and seen
by gds2mesh.

In line 3, we import everything from the ProcessDesc module, which includes
ParameterSet and ProcessBase used later in the script.

Classes A process rule typically consists of two classes. The first class is derived from
ParameterSet(“Class ParameterSet”, p. 64), declaring process parameters (line
5-21).

The other class is derived from ProcessBase (“Class ProcessBase”, p. 68),
and defines how the device structure should be built from the mask (line 23-71).
The constructor method of the process class typically has an argument params,
which contains the parameters.

Gds2mesh calls the buildDevice() method for building the device structure,
which is the core of a process rule.

Parameters We then define the DiodeParams class, which is derived from the ParameterSet
base class. In line 9-21, we declares the list of parameters that characterize this
process. Each parameter is a tuple with three elements, the name, the default
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value and a brief description. The parameters that determines layer thicknesses
are shown in Figure 3.1, p. 23.

Line 33-35 demonstrates how parameters are used in the process class. The process
class has an attribute params, and one can use its getParams() method to read
a list of parameters.

Mask Graphs The process class also has an attribute mask, and Gds2mesh is responsible for
setting it to a MaskBase (“Class MaskBase”, p. 65) object that contains a mask
set.

A mask set consists of several layers, referenced by names. In lines 37-39, we
build a SimplePolygonGraph object (“Class SimplePolygonGraph”, p. 47)
from each of the three mask layers.

3D Objects We can construct a 3D object by extruding from the graphs, as the substrate object
in line 42. The z-coordinates of the bottom and top surfaces of the substrate object
are -Tsub and 0.0, respectively.

For more options of extrusion, please see “Class ExtrudedPolygonNG”, p. 57
for details.

Device Regions In line 43, we add the 3D object to the device structure as a region, named sub.
The material of this region is silicon. The top surface is not used; while the
bottom surface is labeled bottom, and will be used as a boundary condition in
device simulation, as we shall see in the next simulation.

The metal plug and metal contact regions are similarly defined in lines 45-51, and
another boundary top is declared.

We then fill the empty spaces with oxide with the set_fill_object()method.

Doping Profiles In line 61, we define a uniform acceptor doping profile within the graph g_sub
between the heights -Tsub and 0.0, with concentration Nsub. The profile is then
added to the device.

In lines 64-66, we defines a Gaussian profile for the N+ diffusion of the junction.
The active mask layer is the implant window, the range, characteristics lengths
and peak concentrations come from parameters.

Mesh-Size
Constraints

In lines 69-71, we apply mesh size constraints at the depths -0.1 and 0.0, under the
graph g_sub, and the length constraint comes from the parameter msz_active.

Generating Mesh This concludes the process rule script, and one can load this script in the Gds2mesh
GUI. The process DiodeProcess and parameter DiodeParams will appear in
the list of available processes and parameters.
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This process rule requires a mask set with three layers, SUB, ACTIVE and METAL.
An example mask is located at examples/simple_mask.pkl.
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Device Simulation

After generating the .tif3d mesh file for the diode with the process rule defined
in the previous section. The input deck for simulating the diode is listed below.

Program listing of the Genius input deck for the diode.

1GLOBAL T=300 Doping=1e19 Resistive=true
2
3IMPORT TIF3D=diode.tif3d
4
5BOUNDARY Id=top Type=SolderPad
6BOUNDARY Id=bottom Type=Ohmic
7
8METHOD Type=Poisson NS=Newton LS=BCGS PC=ASM
9SOLVE

10
11METHOD Type=DDML1 NS=Newton LS=BCGS PC=ASM
12SOLVE Type=Equ
13
14METHOD Type=DDML1 NS=Newton LS=BCGS PC=ASM
15SOLVE Type=DCSweep Vscan=top Vstart=0 Vstop=-0.8 Vstep=-0.05

One can import the device geometry and mesh from the .tif3d file. We enable
the option ResistiveMetal in the GLOBAL command, since we need hope to
treat metal regions as realistic metals with resistivity.

The two boundaries, top and bottom, declared in process rule, are defined as
SolderPad and Ohmic boundaries for device simulation, respectively, in the .inp
deck.
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Gdsii Layer Map
Mask set in Gds2mesh can be generated in several ways, programmatically or from
GDSII files. Layers in GDSII files are identified by numeric IDs. However, the
process rules of Gds2mesh refer to mask layers by their names. One therefore has
to map the numeric GDSII layer number to the logical names so that they can be
used in Gds2mesh.

A mapping script, for the layer definition of MOSIS CMOS process, is shown
below.

Program listing of the MOSIS mask map definition.

1__all__=['MosisCMOSMask']
2
3from ProcessDesc import *
4
5class MosisCMOSMask(GdsiiMask):
6map = {
7'N_WELL': 42,
8'P_WELL': 41,
9'ACTIVE': 43,

10'POLY': 46,
11'N_PLUS_SELECT': 45,
12'P_PLUS_SELECT': 44,
13'CONTACT': 25,
14'METAL1': 49,
15'ROUTE_PORT': 24 # Port for routing
16}
17
18def __init__(self, fname, params=GdsiiMask.Params(), \
19top_level_struct=None):
20super(MosisCMOSMask, self).__init__(fname, \
21params=params, top_level_struct=top_level_struct)
22
23def getLayerList(self):
24return [
25'BBOX',
26('N_WELL', 0x80ff8d, 0),
27('P_WELL', 0x80a8ff, 0),
28('ACTIVE', 0x008000, 5),
29('POLY', 0xff0000, 4),
30('N_PLUS_SELECT', 0x01ff6b, 12),
31('P_PLUS_SELECT', 0xfbe328, 13),
32('CONTACT', 0x0080ff, 1),
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33('METAL1', 0x0000ff, 12),
34'ROUTE_PORT']
35
36def getLayer(self, layer):
37if layer=='BBOX':
38return self.getBoundbox()
39else:
40return super(MosisCMOSMask, self).getLayer(layer)

The class attribute, map, contains the actual mapping from logical name to the
GDSII numeric layer number.

The getLayerList() method provides the Gds2mesh GUI information about
which layers are to be displayed in the mask view. If a layer is defined as a tuple,
the second and third elements in the tuple defines the color and fill pattern in which
the layer should be displayed.

We extend the getLayer() method from the base class, to return the boundbox
graph, to be displayed in the Gds2mesh GUI.



Generic CMOS Process Rules Defining Process Rules

Genius Device Simulator 31

Generic CMOS Process Rules
We need to explain the GenericCMOS script in more detail.

The file is located at /opt/cogenda/1.7.3/gds2mesh/lib/GenericCMOS.py

The process rule in this example designed for the GDSII mask files in the open-source
cell library developed by Graham Petley (http://www.vlsitechnology.org/), with
MOSIS design rules and layer map. Each circuit cell has two wires labeled vdd
and vss, and several possible IO pads for each input and output ports, so that
place&route software can connect this cell to the circuit. This example CMOS
process rule make use of these labels for IO pads and power pads, as described
in section “Power and IO Pads”, p. 38. And the layout of inverter is shown in
Figure 3.2, p. 31.

Figure 3.2 Mask of an inverter circuit

Overview of CMOS Process

Every process rule in Gds2mesh is a Python class inherited from the ProcessBase
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class, is shown below.

ProcessBase Class

1class ProcessBase(object):
2
3Params = ParameterSet
4
5def __init__(self, params):
6self.params = params
7self.mask = None
8self.device = gds2mesh.Structure()
9self.refine = True

10
11def setMask(self, mask):
12self.mask = mask
13
14def buildDevice(self):
15pass
16
17def doMesh(self, quality=0.3):
18self.device.do_mesh(quality)
19
20def doSurfaceMesh(self, quality=0.3):
21self.device.do_surface_mesh(quality)
22
23def save(self, fname, ftype=None):
24...

The device structure, as a set of polyhedra, should be stored in self.device.
It is initially empty, and is supposed to be populated within builddevice()
method. In the base class, builddevice() is empty.

The CMOSProcess class extends ProcessBase, and defines the of a CMOS
process. The general structure of a device produced by this process rule is shown
in Figure 3.3, p. 33. The thicknesses of layers are defined by process parameters
TSTI, Tox, Tpoly, etc.

The buildDevice() method is extended in the CMOSProcess class, as we
see in next listing. Since a CMOS process is rather complex, we break down
buildDevice() to several steps, e.g. buildActive(), buildPoly(), placeChannelDoping(),
etc. These steps are defined in ProcessBase, and some of them extended further in
the specific processes, such as the 0.13um process CMOS013. In the followings,
we explain the methods in GenericCMOS one by one.

Snippet in CMOSProcess class
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Figure 3.3 Layers thicknesses and z-coordinates in the CMOS process

1class CMOSProcess(ProcessBase):
2'''Generic Deep Submicron CMOS Process'''
3Params = CMOSParams
4...
5def buildDevice(self):
6if self.mask==None:
7raise ValueError
8self.buildSubstrate()
9self.buildActive()

10self.buildGateOxide()
11self.buildPoly()
12self.buildContact()
13self.buildMetal1()
14self.buildPowerPad()
15self.buildIOPad()
16self.buildFillOxide()
17
18self.placeWaferDoping()
19self.placeWellDoping()
20self.placeChannelDoping()
21self.placePocketDoping()
22self.placeSDDoping()
23
24if self.refine:
25self.meshSizeControl()
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Building Geometry Objects

Constructor

The constructor method of GenericCMOS is shown in the next Listing. In this
method, we calculate the z-coordinates of the layers (see also Figure 3.3, p. 33),
and save them in object variables such as self.z0, self.zpoly, etc.

The material used in some of the regions are defined as well.

Constructor of the CMOSProcess class

1def __init__(self, params):
2super(CMOSProcess, self).__init__(params)
3self.IOPadList = None # default=None. We build every IO pad \
4in this case
5
6Tsub, TSTI, Tox, Tpoly, TILD, TM1, lmd = self.params.getParams([ \
7'Tsub','TSTI', 'Tox', 'Tpoly', 'TILD', 'TM1', 'lmd'])
8self.z0 = 0.0
9self.zbottom = self.z0 - Tsub

10self.zSTI = self.z0 - TSTI
11self.zox = self.z0 + Tox
12self.zpoly = self.z0 + Tpoly
13self.zM1b = self.z0 + TILD
14self.zM1t = self.z0 + TILD + TM1
15self.zmax = self.zM1t + 2*lmd # top of oxide
16self.zpad = self.zmax + 0*lmd # top of pad
17
18self.materials = {'npoly': 'NPoly',
19'ppoly': 'PPoly',
20'active_contact': 'Al',
21'poly_contact': 'Al',
22'metal1': 'Al',}

Substrate and Active

The silicon substrate below the bottom of STI isolation, i.e. zbottom > z > zSTI, is
referred to as the sub region. In buildSubstrate(), we obtain the bound-box
of the mask, and through extrusion, builds the substrate object, is shown in be-
low. The bottom surface of sub region is defined as a boundary, also named sub.
The maximum size of the mesh elements in substrate region is constrained by the
msz_sub parameter.
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In the buildActive() method, is shown in below, the active regions, defined
by the ACTIVE layer in the masks, are built above the substrate.

buildSubstrate() method of CMOSProcess class

1def buildSubstrate(self):
2if self.refine:
3msz_sub = self.params.getParams('msz_sub')
4else: msz_sub = 1e3
5g = self.mask.getBoundbox()
6obj = Extrusion(g, self.zbottom, self.zSTI)
7self.device.add_object(obj, "sub", "Si", "", "sub", msz_sub)
8# bottom surface with label

The active region is not built from simple extrusion. In order to model the corner
rounding at the edges of STI, a set of offsets are defined as process parameters, and
used during extrusion. The offset/height parameters are illustrated in Figure 3.4,
p. 36.

buildActive() method of CMOSProcess class

1def buildActive(self):
2if self.refine:
3msz_active = self.params.getParams('msz_active')
4else: msz_active = 1e3
5Ro0, Rh1, Ro1, Rh2, Ro2 = self.params.getParams(['Ro0_STI',\
6'Rh1_STI', 'Ro1_STI', 'Rh2_STI', 'Ro2_STI' ])
7TSTI, rsl_STI = self.params.getParams(['TSTI', 'rsl_STI'])
8
9heights = [self.zSTI, self.z0-Rh2, self.z0-Rh1, self.z0]

10offsets = [TSTI*rsl_STI, -Ro2, -Ro1, -Ro0]
11obj = Extrusion(self.mask.getLayer('ACTIVE'), heights, offsets)
12self.device.add_object(obj, "active", "Si", "", "", msz_active)

There are probably several active polygons in the mask. Accordingly, gds2mesh
builds several active regions, named as active_0, active_1, active_2, etc.

Gate Regions

In this example, gate oxide, STI fill-in, and passivation oxide are not distinguished.
They are assigned the same SiO2 material, and constructed last in the buildFillOxide()
method in section Error: Reference source not found.

Next, we build the polysilicon gate regions from the POLY mask layer with the
buildPoly() method is shown below.
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Figure 3.4 The active region is defined by the active mask. A set of Offset and height parameters
are used for defining the corner-rounding of the active regions

buildPoly() method of CMOSProcess class

1def buildGateOxide(self):
2pass
3
4def buildPoly(self):
5lmd = self.params.getParams('lmd')
6if self.refine: msz=lmd
7else: msz=1e3
8g_poly = self.mask.getLayer('POLY')
9g_p_plus = self.mask.getLayer('P_PLUS_SELECT')

10
11g_p_poly = Polygon.intersect(g_poly, g_p_plus)
12g_n_poly = Polygon.subtract(g_poly, g_p_plus)
13
14npoly = Extrusion(g_n_poly, self.zox, self.zpoly)
15self.device.add_object(npoly, 'npoly', self.materials['npoly'],\



Generic CMOS Process Rules Defining Process Rules

Genius Device Simulator 37

16'', '', msz)
17
18ppoly = Extrusion(g_p_poly, self.zox, self.zpoly)
19self.device.add_object(ppoly, 'ppoly', self.materials['ppoly'], \
20'', '', msz)

In Genius simulator, there are two ways to model polysilicon gate material. In the
first approach, one treats the gate as a metal with work-function that corresponds
to the heavily doped n-type or p-type polysilicon, and assign material npoly or
ppoly to the region. By doing this, one ignores poly-depletion effects. Doping
concentration in these regions are ignored. Alternatively, one can assign the Poly-
silicon material to the region, and treat it as a semiconductor. In this approach,
work-function is determined by doping concentration. In this example, the first
approach is used. The portion of gate region within P_PLUS_SELECT mask is
assigned ppoly, the rest is assigned npoly.

In the design rule, the minimum width of POLY is usually 2𝜆. The mesh-size con-
straint is 𝜆 here, making sure that there are some internal mesh points in the poly
regions. As the active regions, the poly regions are named n_poly_0, n_poly_1,
p_poly_0, etc.

Contact Holes

There are two types of contact holes, both derived from the CONTACT layer in
the mask. When a CONTACT polygon is drawn within a POLY polygon, the con-
tact hole is made to the poly region, i.e. between height zpoly and zM1b. On
the other hand, when a CONTACT polygon is drawn within ACTIVE but out-
side POLY, the contact hole is made to the active region, i.e. between height z0
and zM1b. In the buildContact() method in below, g_poly_contact and
g_active_contact graphs are calculated with the rule described above.

buildContact() method of CMOSProcess class

1def buildContact(self):
2lmd = self.params.getParams('lmd')
3if self.refine: msz=lmd
4else: msz=1e3
5off_ply_cnt, off_act_cnt = self.params.getParams(['off_ply_cnt', 'off_act_cnt'])
6
7g_poly = self.mask.getLayer('POLY')
8g_contact = self.mask.getLayer('CONTACT')
9

10g_poly_contact = Polygon.intersect(g_contact, g_poly)
11g_active_contact = Polygon.subtract(g_contact, g_poly)
12
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13heights = [self.z0, self.zM1b]
14offsets = [off_act_cnt, off_act_cnt]
15active_contact = Extrusion(g_active_contact, heights, offsets)
16self.device.add_object(active_contact, 'active_contact',\
17self.materials['active_contact'], '', '', msz)
18
19heights = [self.zpoly, self.zM1b]
20offsets = [off_ply_cnt, off_ply_cnt]
21poly_contact = Extrusion(g_poly_contact, heights, offsets)
22self.device.add_object(poly_contact, 'poly_contact',\
23self.materials['poly_contact'], '', '', msz)

Metal 1

The buildMetal1() method in below is rather straight-forward.

buildMetal1() method of CMOSProcess class

1def buildMetal1(self):
2lmd = self.params.getParams('lmd')
3if self.refine: msz=1.5*lmd
4else: msz=1e3
5obj = Extrusion(self.mask.getLayer('METAL1'), self.zM1b, self.zM1t)
6self.device.add_object(obj, 'metal',\
7self.materials["metal1"], '', '', msz)

Power and IO Pads

In buildIOPad(), the list of pad labels on the ROUTE_PORT layer is first ob-
tained, and for each label, the polygon bounding the label is obtained, and a pad
object is extruded from the polygon. The top of the pad is marked as a boundary
using the label as its identifier.

buildIOPad() method of CMOSProcess class

1def getIOPadList(self):
2if self.IOPadList==None:
3return self.mask.getLabels('ROUTE_PORT')
4else:
5return self.IOPadList
6
7def buildIOPad(self):
8padList = list(set(self.getIOPadList())) ## remove duplicates
9lmd = self.params.getParams('lmd')
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10if self.refine: msz=lmd
11else: msz=1e3
12for pad in padList:
13g = self.mask.getPad('ROUTE_PORT', pad)
14if g==None:
15print 'IO pad "%s" not found' % pad
16raise ValueError
17obj = Extrusion(g, self.zM1t, self.zpad)
18self.device.add_object(obj, pad, 'Al', pad, '', msz)

Fill-in Oxide

The buildFillOxide() method fills the empty space in the device structure
with oxide material is shown in below. This includes the STI isolation, gate insu-
lator, ILD, IMD and passivation oxide.

In buildFillOxide(), an extrusion object is first built with the mask bound-box,
from the bottom of STI to the top of the device structure.

The set_fill_object() method is then called, assigning the SiO2 material.
Internally, set_fill_object() takes the extrusion obj, subtract from it all ob-
jects previously added to the device structure, i.e. active, poly, contact regions,
and finally add the resultant object to the device.

buildFillOxide() method of CMOSProcess class

1def buildFillOxide(self):
2if self.refine:
3msz_ox = self.params.getParams('msz_ox')
4else: msz_ox = 1e3
5obj = Extrusion(self.mask.getBoundbox(), self.zSTI, self.zmax)
6self.device.set_fill_object(obj, "ox", "SiO2", msz_ox)
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Doping Profiles

Substrate Doping

Substrate doping is applied to the entire substrate and all active regions, it is shown
in below. If the Nsub parameter is positive, p-type doping is used. Otherwise,
n-type doping is used.

placeWaferDoping() method of CMOSProcess class

1def placeWaferDoping(self):
2Nsub = self.params.getParams('Nsub')
3# substrate doping
4g_sub = Polygon.offsetted(self.mask.getBoundbox(), 0.1)
5if Nsub>0:
6s = "Acceptor"
7else:
8Nsub *= -1
9s = "Donor"

10self.device.add_profile(PlanarUniformProfile(g_sub,\
11self.zbottom, self.z0, s, Nsub))

Well Doping

P-well doping and N-well doping are applied to regions enclosed by P-WELL and
N-WELL mask, respectively, as shown in below. These are Guassian doping pro-
files, with reference plane z=z0, i.e. at the surface of silicon active regions. The
well doping is usually deep enough that it penetrates STI isolation and enters the
substrate.

In some designs, only N-WELL polygons are drawn, and the P-WELL polygons are
implicit. In this example, the inference of implicit P-WELL polygons should be
handled by the mask class.

placeWellDoping() method of CMOSProcess class

1def placeWellDoping(self):
2g_well_n = self.mask.getLayer('P_WELL')
3g_well_p = self.mask.getLayer('N_WELL')
4
5N_n, Rmax_n, Rmin_n, Ll_n, Lr_n = self.params.getParams(['Nwel_n',\
6'Rmax_wel_n', 'Rmin_wel_n', 'Ll_wel_n', 'Lr_wel_n'])
7self.device.add_profile(PlanarAnalyticProfile(g_well_n, self.z0,\
8Rmin_n, Rmax_n, "Acceptor", N_n, Lr_n, Ll_n,\
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9PlanarAnalyticProfile.GAUSSIAN))
10
11N_p, Rmax_p, Rmin_p, Ll_p, Lr_p = self.params.getParams(['Nwel_p',\
12'Rmax_wel_p', 'Rmin_wel_p', 'Ll_wel_p', 'Lr_wel_p'])
13self.device.add_profile(PlanarAnalyticProfile(g_well_p, self.z0,\
14Rmin_p, Rmax_p, "Donor", N_p, Lr_p, Ll_p,\
15PlanarAnalyticProfile.GAUSSIAN))

Channel Doping

Channel doping profiles are also defined by the well mask, and are similarly Gauss-
ian profiles.

placeChannelDoping() method of CMOSProcess class

1def placeChannelDoping(self):
2g_well_n = self.mask.getLayer('P_WELL')
3g_well_p = self.mask.getLayer('N_WELL')
4
5N_n, Rmax_n, Rmin_n, Ll_n, Lr_n = self.params.getParams(['Nchn_n',\
6'Rmax_chn_n', 'Rmin_chn_n', 'Ll_chn_n', 'Lr_chn_n'])
7self.device.add_profile(PlanarAnalyticProfile(g_well_n, self.z0,\
8Rmin_n, Rmax_n, "Acceptor", N_n, Lr_n, Ll_n,\
9PlanarAnalyticProfile.GAUSSIAN))

10
11N_p, Rmax_p, Rmin_p, Ll_p, Lr_p = self.params.getParams(['Nchn_p',\
12'Rmax_chn_p', 'Rmin_chn_p', 'Ll_chn_p', 'Lr_chn_p'])
13self.device.add_profile(PlanarAnalyticProfile(g_well_p, self.z0,\
14Rmin_p, Rmax_p, "Donor", N_p, Lr_p, Ll_p,\
15PlanarAnalyticProfile.GAUSSIAN))

Pocket Doping

the placePocketDoping()method for pocket doping profile is shown in below.

placePocketDoping() method of CMOSProcess class

1def placePocketDoping(self):
2off_pkt = self.params.getParams('off_pkt')
3g_well_n = self.mask.getLayer('P_WELL')
4g_well_p = self.mask.getLayer('N_WELL')
5g_poly = self.mask.getLayer('POLY')
6g_off_pkt = Polygon.offsetted(g_poly, off_pkt)
7
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8g_pkt_n = Polygon.subtract(g_well_n, g_off_pkt)
9g_pkt_p = Polygon.subtract(g_well_p, g_off_pkt)

10
11theta_pkt = self.params.getParams('theta_pkt')
12N_n, Rmax_n, Rmin_n, Ll_n, Lr_n = self.params.getParams(['Npkt_n',\
13'Rmax_pkt_n', 'Rmin_pkt_n', 'Ll_pkt_n', 'Lr_pkt_n'])
14N_n *= 0.25 # four implant at different phi
15for phi in [45, 135, 225, 315]:
16self.device.add_profile(PlanarAnalyticProfile(g_pkt_n, \
17self.z0, Rmin_n, Rmax_n, theta_pkt, phi, "Acceptor",\
18N_n, Lr_n, Ll_n, PlanarAnalyticProfile.GAUSSIAN))
19
20N_p, Rmax_p, Rmin_p, Ll_p, Lr_p = self.params.getParams(['Npkt_p',\
21'Rmax_pkt_p', 'Rmin_pkt_p', 'Ll_pkt_p', 'Lr_pkt_p'])
22N_p *= 0.25 # four implant at different phi
23for phi in [45, 135, 225, 315]:
24self.device.add_profile(PlanarAnalyticProfile(g_pkt_p,\
25self.z0, Rmin_p, Rmax_p, theta_pkt, phi, "Donor", \
26N_p, Lr_p, Ll_p, PlanarAnalyticProfile.GAUSSIAN))

In this example, the regions where pocket doping are applied are calculated from
the P_WELL, N_WELL and POLY layers. More specifically, POLY graph is first
expanded by off_pkt, to account for the offset spacer at both sides of the gate
poly (line 15). It then subtract P_WELL by the offsetted poly graph (line 17), and
apply the pocket doping for nMOSFET in this area (line 24). The pocket doping
area for pMOSFET is calculated similarly. Since large angle implant is used, four
implants with different rotation are used, each with a quarter of the dose.

Source Drain Doping

Lastly, the source/drain doping profile are defined in the placeSDDoping()
method, as shown in below. The nMOSFET source drain extension is placed in
the area g_sde_n, which is calculated in line 8 as

SDE_n=N_PLUS-POLY

placeSDDoping() method of CMOSProcess class

1def placeSDDoping(self):
2off_spc = self.params.getParams('off_spc')
3g_n_plus = self.mask.getLayer('N_PLUS_SELECT')
4g_p_plus = self.mask.getLayer('P_PLUS_SELECT')
5g_poly = self.mask.getLayer('POLY')
6g_off_spc = Polygon.offsetted(g_poly, off_spc)
7
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8g_sde_n = Polygon.subtract(g_n_plus, g_poly)
9g_sde_p = Polygon.subtract(g_p_plus, g_poly)

10g_sd_n = Polygon.subtract(g_n_plus, g_off_spc)
11g_sd_p = Polygon.subtract(g_p_plus, g_off_spc)
12
13# s/d extension
14N_n, Rmax_n, Rmin_n, Ll_n, Lr_n = self.params.getParams(['Nsde_n',\
15'Rmax_sde_n', 'Rmin_sde_n', 'Ll_sde_n', 'Lr_sde_n'])
16self.device.add_profile(PlanarAnalyticProfile(g_sde_n, self.z0, \
17Rmin_n, Rmax_n, "Donor", N_n, Lr_n, Ll_n, \
18PlanarAnalyticProfile.GAUSSIAN))
19
20N_p, Rmax_p, Rmin_p, Ll_p, Lr_p = self.params.getParams(['Nsde_p',\
21'Rmax_sde_p', 'Rmin_sde_p', 'Ll_sde_p', 'Lr_sde_p'])
22self.device.add_profile(PlanarAnalyticProfile(g_sde_p, self.z0, \
23Rmin_p, Rmax_p, "Acceptor", N_p, Lr_p, Ll_p, \
24PlanarAnalyticProfile.GAUSSIAN))
25
26# deep s/d
27N_n, Rmax_n, Rmin_n, Ll_n, Lr_n = self.params.getParams(['Nsd_n', \
28'Rmax_sd_n', 'Rmin_sd_n', 'Ll_sd_n', 'Lr_sd_n'])
29self.device.add_profile(PlanarAnalyticProfile(g_sd_n, self.z0, \
30Rmin_n, Rmax_n, "Donor", N_n, Lr_n, Ll_n, \
31PlanarAnalyticProfile.GAUSSIAN))
32
33N_p, Rmax_p, Rmin_p, Ll_p, Lr_p = self.params.getParams(['Nsd_p',\
34'Rmax_sd_p', 'Rmin_sd_p', 'Ll_sd_p', 'Lr_sd_p'])
35self.device.add_profile(PlanarAnalyticProfile(g_sd_p, self.z0, \
36Rmin_p, Rmax_p, "Acceptor", N_p, Lr_p, Ll_p, \
37PlanarAnalyticProfile.GAUSSIAN))

On the other hand the deep source drain is placed in the area g_sd (line 10), which
is offsetted by the spacer as

SD_n=N_PLUS-POLY_expanded_off_spc
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Mesh Size Control

The meshSizeControl() method in the base class CMOSProcess is empty,
which means it is left to the sub-classes to define how mesh should be refined.

The CMOS013 class in lib/CGD013.py extends CMOSProcess, primarily the
meshSizeControl() method, as shown in below. It derives a few graphs from
the mask layers in lines 12-17, as illustrated in Figure 3.5, p. 44. With these graphs
defined, the mesh size in various parts in the device is constrained as below.

Figure 3.5 Derived graph in meshSizeControl()

• The graph g_tr bounds the channel of transistor, in which area and near the
surface, the mesh is the finest, constrained by msz_surf (lines 39-40).

• Deeper in the channel area (g_tr) is the MOS depletion region, where the
mesh gradually gets coarser to msz_depl (lines 33-38).

• The graph g_diff includes all PN junction formed by diffusion, i.e. N_PLUS
in p_WELL or P_PLUS in N_WELL. In this area, mesh size is constrained around
the junction depth (lines 27-32).

• Similarly, the mesh size in wells is constrained by msz_well.

meshSizeControl() method of CMOSProcess class

1def meshSizeControl(self, external_file=None):
2lmd = self.params.getParams('lmd')
3off_spc = self.params.getParams('off_spc')
4off_pkt = self.params.getParams('off_pkt')
5
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6g_active = self.mask.getLayer('ACTIVE')
7g_contact= self.mask.getLayer('CONTACT')
8g_poly = self.mask.getLayer('POLY')
9

10g_n_plus= self.mask.getLayer('N_PLUS_SELECT')
11g_p_plus= self.mask.getLayer('P_PLUS_SELECT')
12g_diff = Polygon.intersect(g_active, Polygon.add(g_n_plus, g_p_plus))
13
14g_off_spc = Polygon.offsetted(g_poly, 1.3*off_spc)
15g_off_2lmd = Polygon.offsetted(g_poly, 2.2*lmd)
16g_tr = Polygon.intersect(g_active, g_off_spc)
17g_tr_2lmd = Polygon.intersect(g_active, g_off_2lmd)
18
19g_active_contact = Polygon.subtract(g_contact, g_poly)
20
21msz_active, msz_wel, msz_sd, msz_depl, msz_surf = \
22self.params.getParams(['msz_active', 'msz_wel',\
23'msz_sd', 'msz_depl', 'msz_surf'])
24self.device.add_mesh_size_control(g_active, self.zSTI, \
25msz_active)
26self.device.add_mesh_size_control(g_active, self.z0-0.20, msz_wel)
27self.device.add_mesh_size_control(g_active, self.z0-0.10, msz_wel)
28self.device.add_mesh_size_control(g_active, self.z0-0.01, msz_wel)
29
30self.device.add_mesh_size_control(g_diff, self.z0-0.22, msz_sd)
31self.device.add_mesh_size_control(g_diff, self.z0-0.18, msz_sd)
32self.device.add_mesh_size_control(g_diff, self.z0-0.14, msz_sd)
33self.device.add_mesh_size_control(g_diff, self.z0-0.10, msz_sd)
34
35self.device.add_mesh_size_control(g_tr, self.z0-0.12, \
360.5*(msz_depl+msz_sd))
37self.device.add_mesh_size_control(g_tr, self.z0-0.09, msz_depl)
38self.device.add_mesh_size_control(g_tr, self.z0-0.06, msz_depl)
39self.device.add_mesh_size_control(g_tr, self.z0-0.04, msz_depl)
40self.device.add_mesh_size_control(g_tr, self.z0-0.02, msz_depl)
41self.device.add_mesh_size_control(g_tr, self.z0-0.01, \
420.5*msz_depl+0.5*msz_surf)
43self.device.add_mesh_size_control(g_tr, self.z0-7e-3,\
440.3*msz_depl+0.7*msz_surf)
45self.device.add_mesh_size_control(g_tr, self.z0-4e-3, msz_surf)
46self.device.add_mesh_size_control(g_tr, self.z0-1e-3, msz_surf)
47
48self.device.add_mesh_size_control(g_tr_2lmd, self.z0-1e-3,2*msz_surf)
49
50self.device.add_mesh_size_control(g_active_contact, \
51self.z0-0.001, 0.2*lmd)
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52
53if not external_file==None:
54self.device.add_mesh_size_control(external_file)
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CHAPTER

4
API Reference

Gds2Mesh consists of libraries written in both C++ and in Python, and a uniform
Python API is provided. This chapter describes this API.

Module gds2mesh
The gds2mesh module is written in C++ and exposes an API in the Python lan-
guage. It provides the following classes

Class SimplePolygonGraph

The SimplePolygonGraph class describes a polygon graph containing several dis-
joint polygons, possibly with holes. The polygons must be simple and NOT self-in-
tersecting.

Constructor SimplePolygonGraph

SimplePolygonGraph()

Returns An empty graph.

Constructor fromPolygon

fromPolygon(points)

Arguments points list of corner points of the polygon, each point is represented by a tuple
(x,y).

Returns A graph containing polygon (possibly with holes) constructed from the corner.

Factory Method add

add(graph_a, graph_b, simplify=True)
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Calculate the union of two graphs and return the result as a new graph.

Arguments graph_a graph, first operand, of the SimplePolygonGraph type.

graph_b graph, second operand, of the SimplePolygonGraph type.

simplify boolean, whether to simplify the resultant by removing redundant points.

Returns The union of the two graphs.

Factory Method subtract

subtract(graph_a, graph_b, simplify=True)

Calculate the difference of two graphs, and return the result as a new graph.

Arguments graph_a graph, first operand.

graph_b graph, second operand.

simplify boolean, whether to simplify the resultant by removing redundant points.

Returns The difference of the two graphs 𝑎 − 𝑏.

Factory Method intersect

intersect(graph_a, graph_b, simplify=True)

Calculate the intersection of two graphs, and return the result as a new graph.

Arguments graph_a graph, first operand.

graph_b graph, second operand.

simplify boolean, whether to simplify the resultant by removing redundant points.

Returns The intersection of the two graphs.

Factory Method sum

sum(graphs, simplify=True)
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Calculate the union of a list of graphs, and return the result as a new graph.

Arguments graphs list of graph

simplify boolean, whether to simplify the resultant by removing redundant points.

Returns The union of the list of graphs.

Factory Method offsetted

offsetted(graph, offset)

Offset the edges of a graph, and return the offsetted graph as a new graph.

Arguments graph_a graph, first operand.

offset float, amount of offset. Positive values means expanding the graph, and
negative means shrinking.

Returns The graph offsetted by the specified distance.

Method is_in_filled_region

is_in_filled_region(point)

Check if the given point is in a filled region in this graph.

Arguments point Point object.

Returns Return True if the given point is in a filled region in this graph, False otherwise.

Method get_boundbox

get_boundbox(bl, tr)

Calculate a rectangular boundbox that encloses all shapes in the graph.

Arguments bl Point object. Bottom-left corner of the boundbox will be stored here.

tr Point object. Top-right corner of the boundbox will be stored here.



API Reference Module gds2mesh

50 Genius Device Simulator

Returns Boundbox of the graph will be stored in bl and tr.

Method export_svg

export_svg(filename)

Export the graph in the SVG format.

Arguments filename String. Path to the .svg file where the graph should be saved.

Method save

save(filename)

Export the vertices, edges and faces of a graph to a text file, which is human
readable, and useful in debugging.

Arguments filename String. Path to the .txt file where the graph should be saved.

Method toPathList

toPathList()

Returns List of corner points in the graph, each point is represented as a tuple (x,y).
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Class GdsReader

The GdsReader class is responsible for reading and parsing the GdsII mask layout
file.

Factory Method fromGdsFile

fromGdsFile(fname)

Arguments fname string, path to the GdsII file.

Returns GdsReader object constructed from the GdsII file.

Method layers

layers()

Returns List of integer layer numbers in the GdsII file.

Method top_level_structures

top_level_structures()

Returns List of strings containing all the top-level instances in the GdsII file.
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Class LayerGraph

The LayerGraph class builds polygon graphs from the specified structure and
layer from the GdsII mask layout.

Constructor LayerGraph

LayerGraph(gds_reader)

Arguments gds_reader is a GdsReader object.

Returns LayerGraph object

Method build

build(structure, layer)

Arguments structure string, GdsII instance name from which the polygon graph is gener-
ated.

layer integer, GdsII layer number.

Returns SimplePolygonGraph object containing the polygon graph of the given layer
of the GdsII instance.

Method build_pad

build_pad(structure, layer, label)

Arguments structure string, GdsII instance name from which the polygon graph is gener-
ated.

layer integer, GdsII layer number.

label string, the GdsII text label's name.

Returns SimplePolygonGraph object containing the polygon graph of the given text
label of the GdsII instance.

Method build_boundbox

build_boundbox(structure, margin=0.0)
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Arguments structure string, GdsII instance name for which the bounding box is needed.

margin float

Returns SimplePolygonGraph object containing the bounding-box around the struc-
ture, with the given margin.

Method gds_labels

gds_labels(structure, layer)

Arguments structure string, GdsII instance name.

Returns List of strings containing GdsII text labels in the layer.



API Reference Module gds2mesh

54 Genius Device Simulator

Class Structure

The Structure class contains the device structure being built by Gds2Mesh, and
is the central class in this program.

Constructor Structure

Structure()

Returns Empty Structure object

Method add_object

add_object(polyhedron, label, material, top_bc="", \
bottom_bc="", maxh=1e10)

Arguments polyhedron ExtrudedPolygonNG object, region to be added to the device.

label string, label of the region.

material string, material name of this region.

top_bc string, name of boundary of the top surface. The defulat value is empty,
which means no boundary specified.

bottom_bc string, name of boundary of the bottom surface. The defulat value is
empty, which means no boundary specified.

maxh float, the max mesh size of this object. The defulat value is sufficient large
to take no effect.

Method set_fill_object

set_fill_object(polyhedron, label, material, maxh=1e10)

Arguments polyhedron ExtrudedPolygonNG object, in which empty space will be filled
by this fill region.

label string, label of the region.

material string, material name of this region.
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maxh float, the max mesh size of fillin object. The defulat value is sufficient large
to take no effect.

Method add_mesh_size_control

add_mesh_size_control(graph, z, h)

Arguments graph SimplePolygonGraph object, planar region to place mesh size control.

z float, the z-coordinate of the mesh size control.

h float, the mesh edge length constraint.

Method add_mesh_size_control

add_mesh_size_control(fname)

Arguments fname string, the path to the mesh size constraint file.

Method add_profile

add_profile(profile)

Arguments profile ProfileBase object.

Method do_mesh

do_mesh(quality=0.5, verbose=3)

Arguments quality float, mesh smooth factor between 0 and 1. High quality factor results
in finer mesh, but may fail in certain situations.

verbose integer, meshing output verbosity level.

Method export_tif3d

export_tif3d(tif3d_file)

Export the meshed structure in TIF format.
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Arguments tif3d_file string containing the output file name.

Method export_gdml

export_gdml(gdml_file)

Export the meshed structure in GDML format.

Arguments gdml_file string containing the output file name.
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Class ExtrudedPolygonNG

The ExtrudedPolygonNG builds a polyhedron out of a planar graph by extrusion.
This is the main mechanism in Gds2Mesh to describe object geometry for planar
processes.

Constructor

Arguments graph SimplePolygonGraph object of the planar graph.

base float, z-coordinate of the base face of the extruded object.

top float, z-coordinate of the top face of the extruded object.

Returns ExtrudedPolygonNG object

Constructor

Arguments graph SimplePolygonGraph object of the planar graph.

heights list of floats, containing z-coordinate of the offset stations. The first
element of the list corresponds to the bottom face of the extruded object, and the
last element the top face of the object.

offsets list of floats, containing the amount of offsets at the corresponding offset
stations. All Offset values are with respect to graph.

Returns ExtrudedPolygonNG object
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Class PlanarUniformProfile

The PlanarUniformProfile class is derived from the abstract class ProfileBase.

Constructors

Arguments mask SimplePolygonGraph object of mask graph.

zmin float, minimum z-coordinate of the profile.

zmax float, maximum z-coordinate of the profile. Profile value between rmin and
rmax is constant and equals to npeak, and is zero elsewhere.

species string, species of the profile. Commonly used names are Acceptor
and Donor.

npeak float, peak concentration ( cm3).

Returns PlanarUniformProfile object
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Class PlanarAnalyticProfile

The PlanarAnalyticProfile class is derived from the abstract class ProfileBase.
It supports 3D analytic profiles of Gaussian or Erfc distribution function under
polygon mask.

Constructors

Arguments mask SimplePolygonGraph object of mask graph.

z_plane float, z-coordinate of reference plane, from which location rmin and
rmax is measured.

rmin float, coordinate along the principal axis of the profile.

rmax float, coordinate along the principal axis of the profile. Profile value between
rmin and rmax is constant and equals to npeak.

theta float, inclination of the principle axis, i.e. angle (in degrees) between the
principal axis and −𝑧 axis. Default value is 0.

phi float, azimuth angle (in degrees) of the principal axis. Default value is 0.

species string, species of the profile. Commonly used names are Acceptor
and Donor.

npeak float, peak concentration ( cm3).

char_depth float, characteristic length of the profile along the principal axis.

char_lateral float, characteristic length in the plane perpendicular to the prin-
cipal axis.

type integer enum, possible values are GAUSSIAN and ERFC.

Returns PlanarAnalyticProfile object
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Module graph_util
This module provides convenience utilities for creating and manipulating gds2mesh.SimplePolygonGraph
objects.

Function build_polygon_graph

Arguments points list of (x,y) tuples, each tuple sequentially describes a point in the poly-
gon. It is not necessary to have the last point coincide with the first, the loop will
be automatically closed.

polygons list of lists. Each nested list describes a polygon, which is in turn a list
of tuples (see argument points).

Returns SimplePolygonGraph object containing the union of all polygons, possibly
with holes.
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Function build_rect_graph

Arguments rects list of (x1,y1, x2, y2) tuples, each tuple describes a rectangle.

Returns SimplePolygonGraph object containing the union of all rectangles, possibly
with holes.
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Function build_circ_graph

Arguments center Coordinates of the center of the circle.

radius Radius of the circle.

nSegs Number of polygon segments by which the circle is approximated.

Returns SimplePolygonGraph object containing the circle.
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Function calc_boundbox

Calculate the rectangular boundbox of the graph.

Arguments graph SimplePolygonGraph object.

graphs List of SimplePolygonGraph object.

Returns Tuple (xmin, ymin, xmax, ymax) of the calculated boundbox.
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Module ProcessDesc
This Python module provides the PrcoessParameters and ProcessCMOS classes,
and aliases the following names from the gds2mesh module for
convenience:

• Polygon : gds2mesh.GL2D.SimplePolygonGraph
• Extrusion : gds2mesh.ExtrudedPolygonNG
• PlanarAnalyticProfile : gds2mesh.PlanarAnalyticProfile
• PlanarUniformProfile : gds2mesh.PlanarUniformProfile

Class ParameterSet

Constructor

ParameterSet()

Returns Empty ParameterSet object

Method getParamList

getParamList()

Returns A list containing names of all parameters.

Method getParams

getParams(keys)

Arguments keys Either a list containing parameter names as strings, or a single parameter
name.

Returns A list containing values of parameters, in the order of being specified in the argu-
ment.

Method setParam

setParam(name, val)

Arguments name string, parameter name.

val float, new value of the parameter.
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Class MaskBase

Method getLayerList

getLayerList()

Returns Should return the list of layer names. MaskBase returns an empty list.

Method getBoundbox

getBoundbox()

Returns Should return the bounding box of the mask. MaskBase returns None.

Method getLayer

getLayer(layer)

Arguments layer string, name of the layer.

Returns Should return the SimplePolygonGraph object containing the polygons in this
layer. MaskBase returns None.
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Class GdsiiMask

Extends from the MaskBase class.

Constructor

GdsiiMask(fname, top_level_structure=None)

Arguments fname string, path to the input GDSII file.

top_level_structure string, name of the top level instances in the GDSII.

Returns Return the GdsiiMask object.

Method getLayerList

getLayerList()

Returns List of layer names.

Method getBoundbox

getBoundbox()

Returns Bounding box of the mask.

Method getLayer

getLayer(layer)

Arguments layer string, name of the layer.

Returns SimplePolygonGraph object containing the polygons in this layer.

Method getLabels

getLabels(layer)

Arguments layer string, name of the layer.



Module ProcessDesc API Reference

Genius Device Simulator 67

Returns list of text labels in the layer.

Method getPad

getLabels(layer, name)

Arguments layer string, name of the layer.

name string, name of text label for the pad.

Returns SimplePolygonGraph object, the polygon in the layer that immediately con-
tains the text label.
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Class ProcessBase

Constructor

ProcessBase(params)

Arguments params ParameterSet object, process parameters.

Returns Return the ProcessBase object.

Method buildDevice

buildDevice()

Build the 3D geometry of the device structure.

Method doMesh

doMesh(quality=0.3)

Mesh the device structure, must be called after buildDevice().

Arguments quality float, smooth factor of the mesh.

Method save

save(fname)

Save the mesh to a file in TIF3D or GDML format.

Arguments fname string, path to the output file.
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Function loadProcessFile
loadProcessFile(fname)

Load a process script file, and import from the script classes that are derived from
ProcessBase or MaskBase.

Arguments fname string, path to the .py process script file.
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A
File Format of TIF3D

The TIF3D is a simple ASCII file for describing 3D tetrahedral mesh of semi-
condcutor device. Each line of the TID3D is a record begin with its record type
indicator and followed by all the record data.

Help record: Begin with 'H', followed by user defined string, usually contains
description of this file.

H TIF3D V1.1 created by GDS2MESH

Coordinate record: Begin with 'C', followed by 0 based index and three float
numbers which specify space location of a node.

C <index> <x> <y> <z>

Face record: Begin with 'F', followed by 0 based index, three node indexes which
consist the triangular face and a integer boundary mark. The order of nodes on
the face is not concerned. Gds2mesh will export all the boundary faces of each
region. And the face which has boundary label specified by interface record has
the mark greater than one.

F <index> <n0> <n1> <n2> <mark>

Tetrahedron record: Begin with 'T', followed by 0 based index, then the integer
region index, and the four node of the tetrahedron. The nodes are ordered as node
n4 is above the plane made by n1 n2 and n3.

T <index> <region> <n1> <n2> <n3> <n4>

Region record: Begin with 'R', followed by 0 based index, the material string,
the label string of the region and a integer group code. The region record is used
to specify material infomation for the tetrahedrons with the corresponding region
index.

R <index> <material> <label> <group>
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Interface record: Begin with 'I', followed with 0 based index, the label of the
interface and the integer boundary mark. The interface record links the boundary
label and the boundary make given in face record.

I <index> <label> <mark>

Solution record: Begin with 'S', followed by solution number and the name of
each solution. The TIF3D generated by Gds2Mesh contains doping information
such as: "Net", "Total", "Donor" and "Acceptor".

S <num> <sol> <sol> ...

Data record: Begin with 'N', followed with node index, the region index of the
node belongs to and then the solution data corresponding to solution record. For
node on the interface of different regions, there will be multiply data records for
each region exist.

N <n> <index> <data> <data> ...
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