VisualTCAD

Semiconductor Device Simulator

Version 1.7.2

VisualTCAD User's Guide:

Copyright (c) 2008-2010 Cogenda Pte Ltd, Singapore.

All rights reserved.

- **License Grant** Duplication of this documentation is permitted only for internal use within the organization of the licensee.
 - **Disclaimer** THIS DOCUMENTATION IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WAR-RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIA-BILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-ITY OF SUCH DAMAGE.

Linux is trademark of Linus Torvalds. Windows is trademark of Microsoft Corp.

This documentation was typed in DocBook XML format, and typeset with the $ConT_EXt$ program. We sincerely thank the contributors of the two projects, for their excellent work as well as their generoisty.

1	Inst	allation	1
	1.1	Installing on Windows	1
	1.2	Installing on Linux	4
	1.3	Installing the Floating License on Linux 1.3.1 Starting FlexLM Server 1.3.1.1 Verifying the FlexLM Server 1.3.1.2 Merging with other licenses managed by FlexLM	6 6 7 8
	1.4	Using the Graphical Interface	9
	1.5	Using the Command-line Interface	11
2	Tut	orials	15
	2.1	Simulate a PN Junction Diode2.1.1Building the Diode Structure2.1.2Simulating the I-V Characteristics2.1.3Examining the I-V Characteristics2.1.4Visualizing the Solutions2.1.5Summary	15 15 21 24 27 30
	2.2	Simulate a Diode Rectifier Circuit2.2.1Assigning Circuit Symbol2.2.2Drawing Circuit Schematic2.2.3Simulating the Circuit2.2.4Summary	31 31 33 35 36
	2.3	 A 0.18um MOSFET 2.3.1 Building MOSFET Device Structure 2.3.2 Simulating I-V Curves 2.3.3 Setting Mobility Model Parameters 	37 37 41 43
	2.4	 Mix-Mode Simulation of Inverter IO Circuit 2.4.1 Creating Symbol and Mapping Device Electrode 2.4.2 Mixed-Mode Simulation 	45 45 52
	2.5	Scripting and Automation2.5.1Example 1: Curve Plotting2.5.2Example 2: Spreadsheet2.5.3Example 3: Building MOSFET Device Structure2.5.4Example 4: Using More Than One Window:2.5.5Summary	54 54 56 57 60 62

3	GU	I Refer	ence	63
	3.1	Device	Drawing	63
		3.1.1	Structure Drawing	63
		3.1.2	Device and Simulation	67
		3.1.3	Device View	80
	3.2	Device	e Simulation	81
		3.2.1	Simulation Setting	81
	3.3	Circuit	t Schematics	89
		3.3.1	Place Circuit Component	89
		3.3.2	Simulation Control	91
		3.3.3	Result Analysis	96
		3.3.4	Schematics View	97
	3.4	Device	Visualization	98
		3.4.1	View	98
		3.4.2	Draw	99
		3.4.3	Animating the simulation result	100
	3.5	Spread	lsheet	101
	3.6	XY Pl	otting	103
	3.7	Text E	ditor	106
		3.7.1	Search	106
		3.7.2	Options	108
		3.7.3	Tools	109
4	Pro	gramm	ing Reference	111
	4.1	Device	2D Drawing	111
		4.1.1	Class Device2DScript	111
			4.1.1.1 Method scriptType	111
			4.1.1.2 Method addPolyLineItem	111
			4.1.1.3 Method addRegionLabelItem	111
			4.1.1.4 Method addRegionDoping	112
			4.1.1.5 Method addRegionMoleFraction	112
			4.1.1.0 Method addDataset	112
			4.1.1./ Method addDataset	112
			4.1.1.0 Method addMoloErcetionIter	113
			4.1.1.7 Withing addMoleFractionitem	113
			4.1.1.1. Method addMoghSizeCtrlTtem	113
			4.1.1.11 Method addBulerItom	113
			41113 Method addPoint Ttom	110
				114

Genius Device Simulator

		4.1.1.14	Method doMesh	114
		4.1.1.15	Method exportMesh	114
		4.1.1.16	Method clear	114
		4.1.1.17	Method saveToFile	114
		4.1.1.18	Method setTitle	114
42	Curve	Plot		116
T • <i>2</i>	421	PlotScrir		116
	7.2.1	4.2.1.1	Method scriptType	116
		4.2.1.2	Method curveGroupCount	116
		4213	Method curveCount At	116
		4214	Method insertCurveGroup	116
		4215	Method removeCurveGroup	116
		4216	Method setGroupTitle	117
		4217	Method insertCurve	117
		4.2.1.8	Method clear	117
		4219	Method saveToFile	117
		4.2.1.10	Method setTitle	117
4.3	Spread	dSheet		118
	4.3.1	class Spr	eadSheetScript	118
		4.3.1.1	Method scriptType	118
		4.3.1.2	Method getColumnName	118
		4.3.1.3	Method getColumnData	118
		4.3.1.4	Method insertRows	118
		4.3.1.5	Method insertColums	118
		4.3.1.6	Method setColumnData	119
		4.3.1.7	Method setColumnName	119
		4.3.1.8	Method calcColumn	119
		4.3.1.9	Method saveToFile	119
		4.3.1.10	Method setTitle	119
		4.3.1.11	Method clear	120
4.4	MainW	Vindow		121
	4.4.1	Class Ma	inWindowScript	121
		4.4.1.1	Method scriptType	121
		4.4.1.2	Method openDocumentFromFile	121
		4.4.1.3	Method saveAllToFile	121
		4.4.1.4	Method newWindow	121
		4.4.1.5	Method getWindowByName	121
		4.4.1.6	Method getWindowByNumber	122

The VisualTCAD device simulation software works on both Windows and Linux platform. In the following sections, we shall outline the installation procedures on both platform, and the procedure to start the graphical user interface and the command-line interface.

Installing on Windows

The installation package comes as an executable file. Double clicking on it will start the installation wizard (**Figure 1.1**, **p. 1**).

Figure 1.1 Welcome message.

We recommend install Paraview, a versatile visualization software package, to examine the output file generated by Genius. The installer of Paraview is included, and the user can choose to install it.

After installation, we can test the installation with the bundled examples. Please click Start ▷ All Programs ▷ Cogenda Genius TCAD ▷ VisualTCAD to start the Simulation manager, and follow the tutorial in **Chapter 2**, "**Tutorials**", **p. 15**.

Figure 1.2 License agreement.

Choose Destination Location Where should Genius TCAD be	installed?
Setup will install Genius TCAD in t To install to this folder, click Next folder.	he following folder.

Figure 1.3 Choosing target installation directory.

Genius TCAD Setup	X
Installing Installing Genius TCAD	X
Please wait while Setup installs Genius TCAD on your computer. Installing Program Files	
InstallJammer	
< Back Next >	Cancel

Figure 1.4 Copying files.

Installing on Windows

Figure 1.5 Optional software packages.

Figure 1.6 Installation completed.

Installing on Linux

The installation package of the Linux version is a self-extracting program, typically named as Cogenda-Linux-<version>.bin. The same package includes binaries and data files for several Linux platforms, include Redhat Enterprise Linux release 5 and release 6, 32- and 64-bit platforms.

Installing Typically we will run the installer as a super user (root):

\$ su
\$./Cogenda-Linux-1.7.4.bin

The installer will check the operating system and the prerequisite software needed to run VisualTCAD. If the operating system is recognized, it lists the editions suitable on this platform in the following menu, along with the features contained in each edition.

```
Checking the machine architecture: found rhel5-64

Editions recommended on this machine:

[ 1] VisualTCAD-flexlm-1.7.4-1-rhel5-64

Platform: rhel5-64 Features: FloatingLicense

[ 2] VisualTCAD-full-flexlm-1.7.4-1-rhel5-64

Platform: rhel5-64 Features: Full,FloatingLicense

[ 3] VisualTCAD-full-ib-flexlm-1.7.4-1-rhel5-64

Platform: rhel5-64 Features: Full,InfiniBand,FloatingLicense

[ 0] Show all editions.
```

The user may choose from the menu the edition to be installed. The basic edition [1] is suitable for most users. The full edition [2] contains advanced products such as VisualFab and VisualParticle that requires special licenses. The ib edition [3] only runs on cluster computers with Infiniband interconnect hardware. The user may also enter 0 to see a full list of editions included in the package.

If the operating system is not recognized, all editions will be displayed, and the user may choose one that matches his platform most closely.

The installer then prompts the user to input the target installation directory, the default location is /opt/cogenda.

The end user license agreement will be displayed, and one must enter y to accept it. It then prints out a summary of this installation, and asks the user to confirm.

	======================================
Install to	: /opt/cogenda
Platform	: rhel5-64
Features	: Full,FloatingLicense

Is the above correct? [Y/exit]

The installer proceeds to unpack the executable binaries and data files. Finally, it asks the user if a shortcut link is to be created to point to the installed version of the software. If one accepts the default setting, a soft-link named /opt/cogenda/current will be created.

```
Make a link to the installed version? [Y/n]
Enter a name for the installed version [current]
```

After installation, a typical directory structure would look like the following.

```
/opt/
```

```
|- cogenda/
    |- current -> releases/VisualTCAD-flexlm-1.7.4-1-rhel5-64
    |- previous -> releases/VisualTCAD-flexlm-1.7.4-rhel5-64
    l- documents/
      |- 1.7.4/
    |- ...
    +- 1.7.4-1/
           |- ...
    L
    L
    |- releases/
    L
       |- VisualTCAD-flexlm-1.7.4-rhel5-64
       +- VisualTCAD-flexlm-1.7.4-1-rhel5-64
    |- repo/
      |- ...
    L
       |- ...
    L
```

Installing the Floating License on Linux

FlexLM provides floating license, and enable computers in the same network to share the same license on the license server. When Cogenda software runs on other machines, they obtain the license from node00 via network. This documents describes how to work with the license manager program, assuming that the license server runs on the computer node00, and that Cogenda software are installed in a shared directory /opt/cogenda. It is also assumed that users' home directories are shared among all hosts with NFS or other distributed file system.

Starting FlexLM Server

Copy the cogenda.lic file to /opt/cogenda/cogenda.lic. The content of the file looks something like the following

SERVER node00 any VENDOR COGENDA USE_SERVER

FEATURE VTCAD COGENDA 1.000 31-mar-2012 4 SN=Customerxxx SIGN="..."
FEATURE VFAB COGENDA 1.000 31-mar-2012 4 SN=Customerxxx SIGN="..."
FEATURE VPTKL COGENDA 1.000 31-mar-2012 4 SN=Customerxxx SIGN="..."
FEATURE GENIUS_MISC COGENDA 1.000 31-mar-2012 32 SN=Customerxxx SIGN="..."
FEATURE GENIUS_DDM2 COGENDA 1.000 31-mar-2012 32 SN=Customerxxx SIGN="..."
FEATURE GENIUS_EBM3 COGENDA 1.000 31-mar-2012 32 SN=Customerxxx SIGN="..."
FEATURE GENIUS_EBM3 COGENDA 1.000 31-mar-2012 32 SN=Customerxxx SIGN="..."
FEATURE GENIUS_AC COGENDA 1.000 31-mar-2012 32 SN=Customerxxx SIGN="..."
FEATURE GENIUS_SPICE COGENDA 1.000 31-mar-2012 32 SN=Customerxxx SIGN="..."
FEATURE GENIUS_OPTICAL COGENDA 1.000 31-mar-2012 32 SN=Customerxxx SIGN="..."
FEATURE GENIUS_DPTICAL COGENDA 1.000 31-mar-2012 32 SN=Customerxxx SIGN="..."
FEATURE GENIUS_HIDDM1 COGENDA 1.000 31-mar-2012 32 SN=Customerxxx SIGN="..."
FEATURE GENIUS_HIDDM1 COGENDA 1.000 31-mar-2012 32 SN=Customerxxx SIGN="..."

Each line corresponds to a feature. This file shows a license with all features enabled, with 32-way parallel computation enabled in the Genius simulator.

One first enter the Cogenda environment with the command below.

\$ source /opt/cogenda/1.7.3/bin/setenv.sh

One then starts the license server with the following command on node00. It is not necessary to use root privilege.

\$ lmgrd -c /opt/cogenda/cogenda.lic -l /tmp/flexlm.log

The lmgrd command starts the FlexLM server, read in the license file, saves the log messages to /tmp/flexlm.log, and turned to background running. If the server is correctly started, the end of flexlm.log file should contain the followings.

```
14:07:56 (lmgrd) License file(s): /opt/cogenda/cogenda.lic
14:07:56 (lmgrd) lmgrd tcp-port 27000
14:07:56 (lmgrd) Starting vendor daemons ...
14:07:56 (lmgrd) Started COGENDA (internet tcp_port 48793 pid 19111)
14:07:56 (COGENDA) FLEXnet Licensing version v11.10.0.0 build 95001 x64_lsb
14:07:56 (COGENDA) Server started on localhost for: VTCAD
14:07:56 (COGENDA) VFAB VPTKL GENIUS_MISC
14:07:56 (COGENDA) GENIUS_COMMON GENIUS_DDM2 GENIUS_EBM3
14:07:56 (COGENDA) GENIUS_AC GENIUS_SPICE GENIUS_OPTICAL
14:07:56 (COGENDA) GENIUS_HIDDM1 GDS2MESH GSEAT
14:07:56 (COGENDA) EXTERNAL FILTERS are OFF
14:07:56 (lmgrd) COGENDA using TCP-port 48793
```

The license server is running on TCP port 27000 of node00.

Verifying the FlexLM Server

Usually Cogenda software will automatically find the license server running on the local network, but it is advised to explicitly configure the location of the license server. One creates a config file .flexlmrc under his/her home directory, i.e. \$HOME/.flexlmrc. The content of the file would be

COGENDA_LICENSE_FILE=@node00

One can use the lmstat command to verify if one can successfully query the license server. For example, one can run the command on node03, and expect the following output:

\$ lmstat

lmstat - Copyright (c) 1989-2011 Flexera Software, Inc. All Rights Reserved. Flexible License Manager status on Thu 1/5/2012 14:17

License server status: 27000@node00 License file(s) on hydrogen: /opt/cogenda.lic:

node00: license server UP (MASTER) v11.10

Vendor daemon status (on hydrogen):

COGENDA: UP v11.10

Finally, one can use the lmdown command.

Merging with other licenses managed by FlexLM

If one is using FlexLM licenses issued by other vendor as well as that from Cogenda, he/she can manage them with a single instance of FlexLM server.

To do this, one needs to copy all "Vendor Daemons" from all vendors, along with the lmgrd program, to the same directory, i.e. /opt/flexlm/bin. Cogenda's vendor daemon is located at /opt/cogenda/1.7.3/bin/COGENDA.

One then copies all the license files to /opt/flexlm/license/, and starts the flexlm server with the command.

```
$ /opt/flexlm/bin/lmgrd -1 /tmp/flexlm.log \
    -c /opt/flexlm/license/cogenda.lic:/opt/flexlm/license/synopsys.lic
```

Note how license files from various vendors are concatenated with semicolon in the -c option.

Using the Graphical Interface

VisualTCAD is the integrated graphical user interface of the Genius device simulation package.

To start VisualTCAD in Windows, please click Start ▷ All Programs ▷ Cogenda Genius TCAD ▷ VisualTCAD in the Start Menus.

In Linux, one types the following command in a shell.

\$ /opt/cogenda/1.7.2/VisualTCAD/bin/VisualTCAD &

The main window of VisualTCAD is shown in Figure 1.7, p. 9.

Figure 1.7 The VisualTCAD Main Window

Checking License Status

To check the license status, click in the menu Help License. The license status dialog shown in **Figure 1.8**, **p. 10**. If you download the trial version of Genius from the website, the default license file included in the package is valid for one month only. Some advanced features and disabled and at most 2 processors are supported. You need to register your copy with Cogenda in order to continue using Genius. To register, click the register button, and email the generated registration code to Cogenda or a sales representative.

o v	isualTCAD.LIN	iux >
License location	/home/hash/bu	ild/genius/license/lic.dat
License status	Ok	
Time to expire (days)	327	
Enabled processors	4	
Enabled features	Feature	Available
	POISSON	×
	DDM1 DDM2	x
	EBM3	×
	RAYTRACE	×
	EMFEM2D SPICE	×
Refresh		Register

Figure 1.8 The License Status Dialog

Every release bears a unique version string, which should be quoted when requesting technical support from Cogenda. The version number of the release can be checked by clicking the menu Help > About, and the version number is shown in the dialog Figure 1.9, p. 10.

Figure 1.9 The About Dialog

Using the Command-line Interface

This section outlines the command-line usage of Genius under Linux. A similar command-line interface exists under Windows, but is rarely used.

Configuration After the installation, one may want to test the installation with the following steps. Daily usage can be (and usually should be) performed under a normal user account, instead of using the root account.

We first copy the examples to our home directory:

```
$ cp -r /opt/cogenda/genius/examples $HOME/genius_examples
$ cd $HOME/genius_examples/PN_Diode/2D
```

For convenience, we add the installation directory to his PATH environment for his convenience. With the bash shell one can type

\$ export PATH=\$PATH:/opt/cogenda/genius/bin

or with csh

set PATH=\$PATH:/opt/cogenda/genius/bin

Now we try running the PN diode example with one single processor:

\$ genius -n 4 -i pn2d.inp

Running with one CPU The running log will be output to screen. It is pretty long, we show only the beginning and ending portions here:

:	**	********	*******	****	****	****	*******	******	******	*********	***
*		888888	88888888	88		888	88888	888	888	8888888	*
*	8	8	8	88	8	8	8	8	8	8	*
*	8		8	8	8	8	8	8	8	8	*
*	8		88888888	8	8	8	8	8	8	888888	*
*	8	8888	8	8	8	8	8	8	8	8	*
*	8	8	8	8	:	88	8	8	8	8	*
*		888888	88888888	888		88	88888	8888	8888	8888888	*
*											*
*	Par	callel Thre	ee-Dimensi	onal	Gen	eral	Purpose	Semico	nductor	Simulator	*

Genius Device Simulator

```
*
                                                                 *
  This is Genius Commercial Version 1.7.2 with double precision.
*
*
                                                                 *
      Copyright (C) 2008-2011 by Cogenda Company.
*
                                                                 *
Constructing Simulation System...
External Temperature = 3.000000e+02K
Setting each voltage and current source here...done.
. . .
. . .
DC Scan: V(Anode) = 2.000000e+00 V
  -----
      | Eq(V) | | Eq(n) | | Eq(p) | | Eq(T) | |Eq(Tn)| |Eq(Tp)| |delta x|
its
_____
 0
       3.69e-03 4.42e-05 5.79e-05 0.00e+00 0.00e+00 0.00e+00 0.00e+00
       7.67e-11 3.89e-06 3.07e-06 0.00e+00 0.00e+00 0.00e+00 4.93e-02
 1
 2
      7.98e-15 3.44e-07 3.55e-07 0.00e+00 0.00e+00 0.00e+00 2.87e-03
 3
      2.57e-15 3.47e-08 3.52e-08 0.00e+00 0.00e+00 0.00e+00 2.87e-04
 4
      1.97e-15 4.09e-09 2.72e-09 0.00e+00 0.00e+00 0.00e+00 2.11e-05
 5
       1.92e-15 5.06e-10 1.68e-10 0.00e+00 0.00e+00 0.00e+00 1.09e-06
        _____
     CONVERGED_PNORM_RELATIVE
Write System to XML VTK file pn2d.vtu...
Write System to CGNS file pn2d.cgns...
Write Boundary Condition to file bc.inc...
Genius finished. Totol time is 1 min 2.78475 second. Good bye.
 Running with We can run Genius with more than one CPUs, using the -n option to specify the
Multiple CPUs number of CPUs to utilize.
               $ genius -n 2 -i pn2d.inp
   Registering
              If you download the trial version of Genius from the website, the default license
              file included in the package is valid for one month only. Some advanced features
              and disabled and at most 2 processors are supported. You need to register your
              copy with Cogenda in order to continue using Genius. To register, simply type
```

Using the Command-line Interface

Installation

\$ genius -r

and a registration code will be displayed on screen.

Please email this registration code to Cogenda or its redistributors. You will be given the license file lic.dat. Copy it to

/opt/cogenda/genius/license/lic.dat

and overwrite the old file. Genius now should work under registered mode, with all options you subscribed turned on.

Command The command line options for Genius are listed below:

Line Options

Name genius -- Genius 3D parallel simulator

Synopsis

genius [-n *ncpus*] -i *filename* genius -r

Options

-n <i>ncpus</i>	Number of processors to be used in the simulation
-i filename	Input file to the simulator
-r	Register the copy with Cogenda

VisualTCAD is the integrated graphical user interface of the Genius device simulation package. This chapter provides a step-by-step tutorial to the VisualTCAD graphical user interface.

Simulate a PN Junction Diode

Our first attempt is to simulate the forward I-V characteristics of a short-base PN junction diode. The files of this tutorial are located at VisualTCAD/examples/tutorial/tu

Building the Diode Structure

The first step is to construct the diode structure. Choose in the menu File \triangleright New Device Drawing, which will start the 2D device drawing window, as shown in Figure 2.1, p. 15.

Figure 2.1 The 2D Device Drawing Window

Simple Mouse Operations The coordinates of the mouse cursor is displayed in the status bar at the right-bottom corner of the main window. The default unit of the coordinates is micron, but this can be changed by the user.

To zoom-in or zoom-out the viewport, one can click the \bigcirc Zoom-in or \bigcirc Zoom-out tool button. Alternatively, one could simple scroll the mouse wheel up or down. The zooming will leave the view under the mouse cursor stationary.

To translate the viewport, one can hold the mid-button (wheel) of the mouse and drag the viewport.

Drawing We start by drawing a box representing the body of the silicon diode. Choose from the drawing tools Add Rectangle.

We define the first corner of the rectangle by clicking at the coordinates (-1, 0). One may notice that in the Add Rectangle tool, the mouse cursor is snapped to the background grip. ¹Click again at (1, -2) to define the other corner, and complete the rectangle. This closed rectangle region is slightly shaded.

We then proceed to define the anode and cathode by drawing the two rectangles (-0.2,0.2)-(0.2,0) and (-1,-2)-(1,-2.2), respectively. The outline of the device structure is shown in Figure 2.2, p. 16.

Figure 2.2 The Outline of the PN Junction Diode

The default snap mode is **X**Auto-Snap, which is appropriate in most occasions. The snapping modes are described in detail in a separate documentation.

Assigning Material Regions

Every enclosed region in the drawing must be labelled and assigned a material. To label such a region, one chooses the **Add Region Label** tool, and click within one of the regions. We first click at (0, -1), which prompts a dialog as shown in **Figure 2.3**, **p. 17**. We key in the label *Silicon*, the maximum mesh size of 0.1 micron in this region, choose the *Si* material from the list, and click OK.

O VisualTCAD	×
Region Label Silicon	
Material Si	
Symbol Color Select	
Max. mesh size (um) 0.1	
🗶 <u>C</u> ancel]

Figure 2.3 Device Region Label Dialog

One notices that the region is now filled with the pink color representing the silicon material. We similarly assign the *Anode* and *Cathode* regions, both of the *Al* material, and the drawing becomes as in Figure 2.4, p. 17.

Figure 2.4 The Regions of the PN Junction Diode

Placing Doping Profiles

Doping is essential for semiconductor devices to function. To place a doping profile to the device, one chooses the Add Doping Profile tool. A doping box consists of a baseline and a height, and the available doping functions include uniform, Gaussian and Erf. We first place the uniform body doping in the entire silicon region. In the Doping Profile state, we click first at (-2,0) and then at (2,0) to define the baseline, and finally click at (2,-2) to define the height of the doping box. A menu pops up and ask for the doping function, where we choose Uniform Doping Profile in this case. A dialog pops up for us to key in the doping profile parameters, as shown in **Figure 2.5**, **p. 18**. We shall name the profile *body*, and a n-type doping concentration of 1×10^{16} cm³.

o Place Un	iform Doping Profile
Basic Parameters	
Profile Name	bordy
Doping Species	Donor 💌
Concentation (cm^-3)	1e+16
Profile Bound Rectangle	
Baseline Point 1	(-1 , 0)
Baseline Point 2	(1,0))
Height (um)	2
Orientation	🔾 Left 💿 Right
	¥ <u>C</u> ancel ✓ <u>O</u> K

Figure 2.5 Uniform Doping Profile Dialog

The p-type diffusion is then defined. We draw another doping box with baseline (-0.2,0)-(0.2,0) and height to (0.2,-0.2). We choose the Gaussian doping function and in the dialog shown in **Figure 2.6**, **p. 18**, we key in the peak concentration 1×10^{19} cm³, and the characteristic length 0.1µm.

 Place Gaussian D 	oping Profile ×
Basic Parameters	
Profile Name	diffusion
Doping Species	Acceptor 👻
Peak Concentration (cm^-3)	le+19
○ Total Dose (cm^-2)	le+13
Characteristic Length	
Characteristic Length (um)	0.1
O Junction Depth (um)	0.2
XY Ratio	1
Profile Bound Rectangle	
Baseline Point 1 (-0.2	, 0)
Baseline Point 2 (0.2	, 0)
Height (um) 0.1	
Orientation O Left	Right
	≭ <u>C</u> ancel <u>√</u> <u>O</u> K

Figure 2.6Gaussian Doping Profile Dialog

The final doping profile of the diode is shown in **Figure 2.7**, **p. 19**. Note the different color representing the n- and p-type doping profiles.

Figure 2.7 The Doping Profiles of the PN Junction Diode

Meshing The numerical device simulation always relies on a mesh grid that divides the device into many small elements. Click on the Do Mesh tool, and accepts the default parameters in the mesh parameter dialog. The initial mesh is shown in Figure 2.8, p. 19. One may notice that the PN junction is slightly highlighted with shading.

Figure 2.8 The Initial Mesh Grid of the PN Junction Diode

This initial mesh grid is not ideal for device simulation, as the junction region would require finer mesh grids. One may use the K Mesh Refinement tool to refine the initial mesh. Accepting the default refine parameters, one sees the mesh is refined at the junction region, where the gradient of doping concentration is steep. We do 2 refinements in sequence, and the final mesh is shown in **Figure 2.9**, **p. 20**.

Figure 2.9 The Final Refined Mesh Grid of the PN Junction Diode

Saving the Device We save the drawing with Save, and key in the file name diode.drw. Additionally, we choose in the menu Device ▷ Save Mesh to File to export the mesh grid to diode.tif.

Simulating the I-V Characteristics

We start by creating a new simulation control window by clicking in the menu File \triangleright New Device Simulation. The empty simulation control window is shown in Figure 2.10, p. 21.

Figure 2.10The Device Simulation Control Window

Loading Device We first load the diode device structure by clicking **b** Load button in the Summary Structure section of the simulation control window. We select the diode.tif file we just created. It takes a few seconds for VisualTCAD and Genius to analyse the tif file. When it finishes, the device structure is visualized in the Structure Viewer, and the automatically identified device electrodes are listed in the Electrodes section. In this case we have the Anode and the Cathode. One may notice that in the Simulation Control dock widget, the default Simulation Mode is Steady-state, and the other choices are Transient and Circuit-element. There is also the list of regions and boundaries in the device structure. Clicking on a region or boundary name would highlight the corresponding region or label in the Structure Viewer. The user can setup physical models, boundary conditions and other solver options from the various tools in the dock widget, but the options are too vast to be described here. Setting DC Sweep For this simple simulation of the I-V characteristics, it is sufficient to setup the electrical sources attached to the electrodes of the device. While the cathode is grounded, the anode voltage will be swept from 0 to 1 volt. We change the source type of anode to Voltage Sweep, and set the start, stop and step voltages to 0, 1, and 0.05 volt, respectively.

Figure 2.11 The Structure and Electrodes of the Simulated Device

Starting Simulation Job

We save the simulation setup to the file diode.sim. To start the simulation job, click the **>** Run and choose a working directory in the dialog shown in **Figure 2.12**, **p. 22**. We create a new directory called run1, and all the simulation results will be kept in this directory.

0	Choose working directory	×
Look in:	📴 /home/hash/Documents/examples/VTCAD 🔹 🔶	술 🥃 📰 🗉
E Compu.	circuit p 18-1 p 18-2 p 18-3 p 18-4 p 18-5 p 18-5 p 18-7 p 18-8 p 18-9 run-1	
Directory:		<u>C</u> hoose
Files of type:	Directories	Cancel

 Figure 2.12
 Choosing a Working Directory for the Simulation Run

Monitoring Progress

As the simulation proceeds, the progress is updated in the status bar, at the right-bottom corner of the window, as shown in **Figure 2.13**, **p. 23**. In addition, simulation solutions are listed in the Results pane in the dock widget. For advanced users, the running log message is available in the process monitor, which is activated by clicking Console in the toolbar.

Simulate a PN Junction Diode

Tutorials

Figure 2.13 The Device Simulation in Progress

Examining the I-V Characteristics

Opening the Spreadsheet

After the simulation completes, we wish to plot the I-V characteristics of this forward-biased PN junction diode. We can click the Show IV Data button to open the spreadsheet containing the terminal information of the solutions. The spreadsheet is shown in Figure 2.14, p. 24.

Visual TCAD _ C X								
Elle Edit Spreadsheet Window Help								
Spreadsheet Tools	🏈 Simulatio	on: diode.sim 🛛 📃 🔪	'isualization: res	sult1.vtu 🛛 🗎 Spread	Sheet: Untitiled 🛛 🔛 Plot: Untitled	* 🕞 SpreadSheet: result.dat*		
Spreadsheet Tools	node_Va	pp [ode_potential	ode_current	athode Vann Diode	- potential bode current			
	1 0	0	1.771e-10	isert Column	2 Anode current [A]			
Column Name Propertie	2 0.05	0.05	1.643034 In	isert Row	-2.095601e-16			
1 Anode_Vapp [V]	3 0.1	0.1	1.124806 D	elete Column	-1.170251e-15			
2 Anode_potential [V]	4 0.15	0.15	4.007031 D	elete Row	-3.981319e-15			
3 Anode_current [A]	5 0.2	0.2	1.309817e-14	0 0	-1.313369e-14			
4 Cathode_Vapp [V]	6 0.25	0.25	4.689015e-14	0 0	-4.682876e-14			
5 Cathode_potential [V]	7 0.3	0.3	1.931699e-13	0 0	-1.931088e-13			
6 Cathode_current [A]	8 0.35	0.35	9.479168e-13	0 0	-9.478766e-13			
	9 0.4	0.4	5.394052e-12	0 0	-5.394081e-12			
	10 0.45	0.45	3.371518e-11	0 0	-3.37152e-11			
	11 0.5	0.5	2.211654e-10	0 0	-2.211655e-10			
	12 0.55	0.55	1.481978e-09	0 0	-1.481978e-09			
	13 0.6	0.6	9.988694e-09	o 0	-9.988694e-09			
	14 0.65	0.65	6.650198e-08	0 0	-6.650198e-08			
	15 0.7	0.7	4.124701e-07	0 0	-4.124701e-07			
	16 0.75	0.75	2.084718e-06	0 0	-2.084718e-06			
	17 0.8	0.8	8.032421e-06	0 0	-8.032421e-06			
Project Explorer	18 0.85	0.85	2.526217e-05	0 0	-2.526217e-05			
/home/hash/build/VisualTCAD 💌	19 0.9	0.9	6.944753e-05	0 0	-6.944753e-05			
21 🗈 📤	20 0.95	0.95	0.0001680654	0 0	-0.0001680654			
Name $ abla Size$	21 1	1	0.0003423317	0 0	-0.0003423317			
translations tool								
🕀 🥁 tmp								
e src								
🕀 🚘 lib								
B images								
🕀 🥃 examples								
e docs								
e ara								

Figure 2.14 Spreadsheet of the Simulated Terminal Characteristics

Plotting the I-V Curve We first select the columns Anode_Vapp and Anode_current. As in most GUI applications, one can select multiple columns by clicking on the column header and holding the Control key. When the two columns are selected, right-click to activate the context menu, and choose to plot the data using as the Anode_Vapp x-variable, as shown in Figure 2.14, p. 24. The plot appears in a new plot window, as shown in Figure 2.15, p. 25.

Setting Plot Options To change the axes settings, click Edit Axes in the dock widget. In the axes property dialog shown in **Figure 2.16**, **p. 25**, select the *Left y-axis* and key in the title, scale and range of the axis.

To change the curve plotting settings, select the curve name from the list in the dock widget, and click Edit Legend. In the dialog window shown in Figure 2.17, p. 25, set the line and symbol options.

The final plot is shown in Figure 2.18, p. 26.

Simulate a PN Junction Diode

Tutorials

Figure 2.15 Diode I-V Characteristics in Linear Scale

 Setting line/symbol styles. 					
Left y-axis Bottom x-axis Right y-axis Top x-axis	kr XI Axis Enabled Axis Title Current (A/um) Axis Scale Type Log10 Scale ▼ Auto Scale Min. Axis Value 1e-15 Max. Axis Value 1e-3 Max. Major Divs. 8 Max. Minor Divs. 5				
	K Cancel ✓ OK				

Figure 2.16 Axis Property Dialog

 Setting line/symbol styles. 						
X-axis Bottom 💌 Y-axis Left 💌	3					
Line	Symbol					
Style Solid line 👻	Style Circle 👻					
Color Red 👻	Color Red 👻					
Thickness 0	Size 8					
	Filled					
	★ <u>C</u> ancel <u>√</u> <u>O</u> K					

Figure 2.17 Plot Style Dialog

Figure 2.18 Diode I-V Characteristics in Log Scale

Visualizing the Solutions

We switch back to the Simulation Control window, and in the Result list, we select all solutions. Right-click and in the context menu click Open Visualization \triangleright . A new visualization window is opened.

Suppose we want to plot the electron concentration profile in the device, choose in the menu Draw > Draw Pseudo Color Electron density. In the visualization window, one can hold the left mouse button and drag in the visualization window. Scrolling the mouse wheel would zoom-in or -out the view, and dragging with the middle button (wheel button) would pan the view. As shown in Figure 2.19, p. 27, the electron concentration is represented by the color scale. Check in the menu Options > Signed Log Scale to enable the log scale for the z axis.

Figure 2.19 Electron Concentration in the Silicon Region of the Diode

- **Filter** One can filter the areas to be included or excluded in the visualization, in the Mesh Filter section in the dock widget. We choose to filter by region names, as shown in **Figure 2.19**, **p. 27**.
- Animation We have included all the solutions in the visualization, each solution at a different anode voltage. The electron profile is different for each solution. In the Animation Control section of the dock widget, we can step through the solutions by clicking the ONext and OPrevious buttons.

Probe We can probe the hole concentration along the straight line (0,0)-(0,-2) in the Probe section in the dock widget, as shown in **Figure 2.21**, **p. 28**. After clicking the Probe button, a spreadsheet containing the interpolated values of hole concentration is opened. We can then plot the hole concentration along the cut-line, as shown in **Figure 2.22**, **p. 29**.

Figure 2.22 Hole Concentration Along the Probe Line

Summary

In the preceding sections, we went through the steps of simulating the I-V characteristics of an PN junction diode. This illustrates the basic flow of device simulation in VisualTCAD.
Simulate a Diode Rectifier Circuit

We can combine the semiconductor device simulation with SPICE circuit simulation. This section shows the steps to demonstrate the rectifying effect of the PN diode. The files of this tutorial are located at VisualTCAD/examples/tutorial/tut2.

Assigning Circuit Symbol

We open the simulation file diode.sim again, and change the Simulation Mode to *Circuit-element*. Since this is a two-terminal device, the default circuit symbol with two pins is displayed, as shown in Figure 2.23, p. 31.

Figure 2.23Default Symbol for the Two-Terminal Device

We want a more suitable symbol for the diode, so we click Change Symbol, and in the dialog (**Figure 2.24**, **p. 32**), we choose the diode symbol.

Then we must map the two device electrodes to the two pins in the circuit symbol, as shown in **Figure 2.25**, **p. 32**. We save to another file named diode-circuit.sim.

Figure 2.24 Dialog for Selecting Circuit Symbol

Figure 2.25 Circuit Symbol for the Diode

Drawing Circuit Schematic

We proceed to draw the circuit schematic. Click in the menu File > New Circuit Schematic to open a new schematic capturing window. We first place the numerical device component by clicking I Numerical Device in the dock widget. Select diode-circuit.sim in the dialog. The diode symbol appears at the mouse cursor and can be placed to the schematic with a click.

Figure 2.26 Placing the Semiconductor Diode Device Model in the circuit

The other symbol components can be placed using \Rightarrow Component tool, the dialog for selecting components is shown in **Figure 2.27**, **p. 34**. For common components like resistors and capacitors, one can alternatively use the shortcut buttons in the dock widget.

Finally one use the **Wire** tool to connect the components together. The completed circuit schematic is shown in **Figure 2.28**, **p. 34**.

Figure 2.27 Dialog for Selecting Components

Figure 2.28 The Completed Rectifier Circuit Schematic

Simulating the Circuit

We want to do transient mode simulation, so we setup the timing with the Setup Simulation tool, as shown in Figure 2.29, p. 35.

o Analysis	Settings ×
Analysis Type Transient 🗸]
Transient Settings	
Run to 2us	
Time Step 100ns]
Use Initial Conditions	
	🗶 <u>C</u> ancel 🛛 🖌 <u>O</u> K

Figure 2.29 Dialog for Setting Up Transient Analysis

We click the \triangleright Run Simulation tool to start the simulation. The monitoring and analysis procedure is similar to that in the previous example. In the result spread-sheet, we plot the columns *probe1pos* and *v1pos*, using *time* as the x-variable. The waveform plot is shown in the Figure 2.30, p. 35.

Figure 2.30 The Voltage of the Sine Source and the Voltage Probe, as Functions of Time

Summary

In this section, we outlined the procedure of simulating devices in circuit. This integrated approach allows one to combine the accuracy of device simulation with the power of SPICE circuit simulation.

A 0.18um MOSFET

The files of this example are located at VisualTCAD/examples/MOSFET.

Building MOSFET Device Structure

As in the previous diode example, we shall start with drawing the device structure of the MOSFET transistor. We first draw the outline of the device with the Add Rectangle and the T Add Polyline tools, as shown in **Figure 2.31**, p. 37.

Figure 2.31 Outline of a MOSFET transistor.

Polyline Tool To draw a polyline or polygon, one can use the polyline tool. Single-click to add a point to the line, double-click to add the last point of the line. If the first point and the last point coincide, a polygon is formed. To cancel the unfinished polyline, click the right mouse button.

Exact Coordinates Input In some cases, it is desirable to enter the exact coordinates of the points of a line. For example, the thickness of the gate oxide of this MOSFET is 4nm, making it difficult to locate the corners of the gate electrode using a mouse. Therefore, we draw the electrode by keying in the exact coordinates.

We first enter the polyline tool. In the status bar, a coordinates input area appears, as shown in **Figure 2.32**, **p. 38**. After one enters the x- and y-coordinates in the blanks, and click the enter button, a point is added to the polyline. One can similarly use this function in other drawing tools.

Input Coord. : (0.0 , 0.0) enter

Figure 2.32 Exact coordinates input area.

Clone and Mirror Some times one desire to make a copy of an object, or make a mirror image of an object. For example, the side-wall spacers around the gate of the MOSFET transistor are symmetrical, so one hope to draw one of them and make the other by mirroring. The Clone, A MirrorX and A MirrorY tools can help you on these tasks.

Labelling Material Regions

One then label each region, assign a name and a material to it. Optionally, one can set a mesh-size constraint to each region. The regions are shown in Figure 2.33, p. 38, and the parameters for the regions are listed in Table 2.1, p. 38.

Region	Material	Mesh Size / µm
substrate	Silicon	0.05
Source	Al	0.04
Drain	Al	0.04
Gate	NPolySi	0.1
Substrate	Al	0.05
spc1	Nitride	0.1
spc2	Nitride	0.1

Table 2.1	Regions of the MOSFET transistor.	
-----------	-----------------------------------	--

Figure 2.33 Regions of the MOSFET transistor.

```
Doping Profiles One then define the doping profiles in the MOSFET. The position of the doping boxes are shown in Figure 2.34, p. 39 and the doping profile parameters shown in Table 2.2, p. 39.
```

Name	Profile	Туре	Peak Conc. / cm^{-3}	Char. L / µm
Substrate	uniform	Acceptor	5×10^{16}	-
Channel	gaussian	Acceptor	1×10^{18}	0.1
LDD_S/LDD_D	gaussian	Donor	2×10^{19}	0.02
Source/Drain	gaussian	Donor	1×10^{20}	0.04

Table 2.2Doping Profiles Parameters.

Figure 2.34 Doping Profiles of the MOSFET transistor.

Mesh Grid To make sure the mesh in the MOSFET channel region is fine enough, we use the Mesh size constraint tool to apply two constraints, shown in cyan color in Figure 2.35, p. 40. After two refinements, the final mesh is generated. We save the mesh to a.tif file for further simulations.

Figure 2.35 Final mesh grid of the MOSFET transistor.

Simulating I-V Curves

As in the previous diode simulation, we create a device simulation and load the.tif file containing the mesh grid of the MOSFET. As shown in **Figure 2.36**, **p. 41**, we are in the steady-state simulation mode, the source and substrate terminals are grounded. The drain terminal is connected to a constant voltage source of 0.1 V. We shall sweep the gate terminal from 0 to 2 V to obtain the transfer characteristics of the MOSFET.

Figure 2.36 Simulation setup for calculating the Id-Vg curve of the MOSFET.

We submit the simulation for running, and shall observe that the drain voltage is first ramped up from 0 to0.1 V, before the actual gate voltage scan begins. This drain ramp-up is necessary to ensure the convergence of the simulation.

After running the simulation, we obtain the spreadsheet containing the terminal voltage/current information in the sweep. We plot the drain current against the gate voltage, and obtain the Id-Vg curve shown in **Figure 2.37**, **p. 42**.

One can also visualize the electron concentration in the device, as shown in **Figure 2.38**, **p. 42**.

It might be interesting to click the **P**_{lay} tool-button to play the animation, and watch the change of electron density as gate voltage increases.

Figure 2.37 Simulated Id-Vg curve of the MOSFET.

Figure 2.38 Electron concentration at Vg=0.45V.

Setting Mobility Model Parameters

So far we have always been using the default physical models and material parameters. In practice, we often need to modify these parameters to model certain aspects of the real device more accurately. VisualTCAD allows you to modify models and parameters in material regions and at boundaries.

For example, suppose we want to use the Lombardi mobility model, which describes the carrier mobility in the inversion layer more accurately. We click the Physical Model tool button, and in the material models tab of the physical model dialog (Figure 2.39, p. 43), we select the substrate region. Since this is a semiconductor region, we can choose the mobility model of it. We select the Lombardi mobility model. From the user manual, we found the list of parameters for the Lombardi model, which is reproduced here in Table 2.3, p. 43. We want to slightly reduce the electron mobility, and set the MUN2.LSM parameter to 1400.

😳 📀 VisualTCAD <@hydrogen>		$\bigcirc \bigcirc \bigcirc \bigcirc $
Global Parameters Physical Models	1aterial Models	
Region Material Type	Basic	
Drain Al Conductor re Gate NPolySi Conductor re	gil Band	
Source Al Conductor re Substrate Al Conductor re	gie gie Impact	
oxide SiO2 Insulator reg spc1 Nitride Insulator reg	or Mobility	
spc2 Nitride Insulator reg substrate Si Semiconduct	or Model Lombardi 🔻	
	Parameters Name Value	=
	MUN2.LSM 1400	
		ū
	Optical	
	Thermal	
	▶ Trap	
Restore Defaults		POK X Cancel

Figure 2.39 Setting mobility model and parameters.

Symbol	Parameter	Unit	Si:n	Si:p
α	EXN1.LSM/EXP1.LSM	-	0.680	0.719
β	EXN2.LSM/EXP2.LSM	-	2.0	2.0
ζ	EXN3.LSM/EXP3.LSM	-	2.5	2.2
ζ	EXN3.LSM/EXP3.LSM	-	2.5	2.2

 Table 2.3
 Parameters of Lombardi mobility model

Symbol	Parameter	Unit	Si:n	Si:p
λ	EXN4.LSM/EXP4.LSM	-	0.125	0.0317
γ	EXN8.LSM/EXP8.LSM	-	2.0	2.0
μ_0	MUNO.LSM/MUPO.LSM	$cm^2V^{-1}s^{-1}$	52.2	44.9
μ_1	MUN1.LSM/MUP1.LSM	$cm^2V^{-1}s^{-1}$	43.4	29.0
μ_2	MUN2.LSM/MUP2.LSM	$\mathrm{cm}^{2}\mathrm{V}^{-1}\mathrm{s}^{-1}$	1417.0	470.5
P_c	PC.LSM	cm^{-3}	0 (fixed)	9.23×10^{16}
C_r	CRN.LSM/CRP.LSM	cm^{-3}	9.68×10^{16}	2.23×10^{17}
C_s	CSN.LSM/CSP.LSM	cm^{-3}	3.43×10^{20}	6.10×10^{20}
В	BN.LSM/BP.LSM	cm/s	4.75×10^{7}	9.93×10^{6}
С	CN.LSM/CP.LSM	-	1.74×10^{5}	8.84×10^{5}
D	DN.LSM/DP.LSM	-	5.82×10^{14}	2.05×10^{14}
$v_{\rm sat0}$	VSATNO / VSATPO	cm/s	2.47	2.47
β	BETAN / BETAP	-	2.0	1.0
α	VSATN.A/VSATP.A	-	0.8	0.8

 Table 2.4
 Parameters of Lombardi mobility model

We can now run the simulation again, and observe the change to the Id-Vg curve, as a result of the change in the mobility model.

Mix-Mode Simulation of Inverter IO Circuit

As in the previous cmos simulation, we can create a device structure of inverter and do Mix-Mode simulation. So we need draw a structure of inverter, the detail step refer to mosfet structure building(**"Building MOSFET Device Structure"**, **p. 37**), here we omit the drawing structure step. About this example we need draw a inverter symbol, then use VisuaTCAD to do Mix-Mode simulation.

We can combine the semiconductor device simulation with SPICE circuit simulation. This section shows the steps to demonstrate the output characteristic of Inverter. The files of this tutorial are located at VisualTCAD/examples/Inverter.

Creating Symbol and Mapping Device Electrode

The first step is to draw the symbol of Inverter. Choose in the menu File \triangleright New Circuit Schematic, then choose in the menu Place \triangleright Library Manager which will start the Library drawing window, as shown in **Figure 2.40**, **p. 45**. Click the child window Add Library, input the Library name inverter, and last click to add symbol.

Figure 2.40 draw new symbol

Now we can obtain the child window of drawing symbol, as shown in **Figure 2.41**, **p. 46**. First input the symbol name, then add the line or circles, in the process user can using Enable/disabled grid snapping mode as needed.

Figure 2.41 inverter symbol

When we finish the symbol drawing, we need add the pin of the symbol to connect with other device of the circuit, here we need 4 pins, named PIN_VDD, PIN_GND, PIN_IN, PIN_OUT, the pin name is must begin with PIN_. the drawing process and is shown in Figure 2.42, p. 46.

Figure 2.42 pin property

Last step for drawing the symbol is define the reference attribute. About the inverter device here we choose the value N, and it stands for Numerical Device.

Which can use in Mix-Mode simulation. The child window is shown in Figure 2.43, p. 47.

Figure 2.43 editing symbol attribute

Our 2D inverter structure is shown in **Figure 2.44**, **p. 47**. Here total have 8 electrodes, we need connect each 2 electrodes like **Figure 2.44**, **p. 47**, finally we have 4 electrodes as our symbol of inverter.

Figure 2.44 2D inverter structure

before the interconnect, we need do boudary setting like Figure 2.45, p. 48

PSub

2

Tutorials

VisualTCAD.LINUX						1. Edit Wo	rkfunction	
Boundaries and Conta	acts	Electrical	[hermal					
Boundary NDrain NGate	Type Ohmic contact Gate contact	Type Resistance	Gate contact	Ω -	•	Boundary Ngate	workfunct	ion ⊿ 1
NSource NSub PDrain PGate	Ohmic contact Ohmic contact Ohmic contact Gate contact	Capacitance Inductance	0	F V H V		Pgate		5.1
PSource PSub	Ohmic contact Ohmic contact	Workfunction	5.1	eV 💌		2. Edit Z W	idth	
						Boundary	Z Width]
						NDrain	1	
						NGate	1	1
						NSource	1	1
		Override G	lobal Z Width-			NSub	1	1
Interconnect	<< Less More >>	Boundary 2 v		μm	•	PDrain	2	2
Restore Defaults				🥔 ОК	' Cancel	PGate	2	!
						PSource	2	2

Figure 2.45 boundary parameter setting

~

Aboout Numerical simulation, as shown in **Figure 2.46**, **p. 48**. We use interconnect command to connect each 2 electrodes, such as connectting PSub to PSource, connectting PGate to NGate, connectting PDrain to NDrain and connectting NSub to NSource. It is shown in **Figure 2.47**, **p. 49**. At the same time we need define the new electrode as VDD, IN, OUT and GND. it is shown in **Figure 2.48**, **p. 49**. The new electrode OUT ia attached to current source so choosing Interconnect Floating setting is true, as shown in **Figure 2.49**, **p. 50**.

Figure 2.46 boudary Condition and Interconnect

When we finish the boudary setting and interconnect setting, we need change the Simulation Mode to Circuit Element, Since this is a four-terminal device, the default circuit symbol with four pins is displayed, as shown in **Figure 2.50**, **p. 50**. We want a more suitable symbol for the inverter, so we click Change Symbol, we change the symbol to we have edited before, as shown in **Figure 2.51**, **p. 51**.

nterconnect				
iterConnect	Туре 2	~<	Contact PSub NSub NGato <u>POstc</u> PDrain NDrain NSource PSource PSource	Type Ohmic contact Ohmic contact Gate contact Ohmic contact Ohmic contact Ohmic contact Ohmic contact
nterconnection Properti Interconnection Float Electrical Resistance 0.0 Capacitance 0.0 Inductance 0.0	es ing E v H v	Extern. Temp	erature Default 0 0.0 rr Coeff. 0 0.0 0.0	K_▼
				💞 OK 🛛 🗶 Cance

Figure 2.47 choose the contact to interconnect

nterConnect	Type	Contact	Type
NGate 1 PGate 1	Interconnection Gate contact Gate contact	PSub NSub PDrain NSource PSource >>	Ohmic contac Ohmic contac Ohmic contac Ohmic contac Ohmic contac Ohmic contac
Interconnection Properties Interconnection Floating Electrical Resistance Capacitance Inductance 0		Thermal Extern. Temperature Default O O Heat Transfer Coeff Default O O O O O O O O O O O O O	(K ▼) (W/K/cm^ ▼

Figure 2.48 define new contact

Then we must map the four device electrodes to the four pins in the circuit symbol, as shown in **Figure 2.52**, **p. 51**. We save to the file named inverter.sim.

terConnect	Type		Contact	Type
IN INGate PGate PGate PSub PSource Source OND INSource OUT POrain PDrain NDrain	Interconnection Gate contact Gate contact Interconnection Ohmic contact Ohmic contact Ohmic contact Ohmic contact Interconnection Ohmic contact	~~		196-
nterconnection Prope Interconnection Flo -Electrical	rties	Thermal		
Resistance 0 Capacitance 0 Inductance 0	Ω ▼ F ▼ H ▼	Extern. Temp Heat Transfe	erature Default 0 0.0 er Coeff. Default	K V

Figure 2.49 Interconnect Floating setting

Figure 2.50 Change Simulation Mode

Figure 2.52 mapping setting

Mixed-Mode Simulation

When we finfish the device setting, we need open a new circuit Schematic window and do circuit simulation, then choose Aumerical Device menu to draw our inverter symbol and click Component menu to draw Voltage source, we can click corresponding menu to add Voltage Probe, Ground and Wire. The final circuit is shown in Figure 2.53, p. 52.

Figure 2.53 Circuit Schematics of inverter simulation

We want to do DC sweep Mode simulation, so we setup the sweep setting with the Setup Simulation tool and 🖨 Solver Options tool, as shown in Figure 2.54, p. 52.

Analysis Type DC Swee	· 1		
C Sweep Settings			
Sweep Variable	Sweep Range		
Voltage source	Sweep Component: V1 🔹		
O Current source	Sweep Start: 0	V -	
O current source	Sweep End: 1.8	V •	The second secon
 Resistor 	Sweep Step: 20	mV 💌	
			Non-Linear Solver Options
Options			Number of Processors 1 🔶 🛛 🕹
Max. voltage step (V):	Default: not limited		Maximum iterations 30 🖨
	0 1 V 💌		Update damping Potential damping -
Predict next solution:	yes 👻		Potential damping factor 1.00
]	
nitial OP Analysis Option	i		Misc. Options
lumber of Source Ramp	-up Steps 3		Truncate voronoi cell Always truncate 🗸
Max Voltage Step in	Ramp-up		Linear solver type Direct (MUMPS)
Max. Voltage Step III		V	
	eu : Default 1 us		Restore Defaults 🥏 OK 🕺 Canc
Initial Value of GMIN	Stepping Default: 1 µS		
	0 [1	μ5 🔻	
	Changing @ Dofpult 1 pC		
Target of GMin	Stepping Ceraut. 1 ps		

Figure 2.54 simulation condition setting and solver Options setting

We click the Run Simulation tool to start the simulation. The monitoring and analysis procedure is similar to that in the previous example. In the result spread-sheet, we plot the columns *Output Voltage* and Input Voltage, using Input Voltage as the x-variable. The waveform plot is shown in the Figure 2.55, p. 53.

Figure 2.55 Simulation result

Scripting and Automation

When building the diode and MOSFET in the previous sections, we used tools Drawing Device Outline, Assigning Material Regions, Placing Doping Profiles and Meshing, etc. in the GUI, to draw the device structure step by step. If the structure is complicated, this process will take some time to complete. It would be okay to do this once, but if you are to build several MOSFET devices, identical in all respects but different gate lengths, the repetion becomes a burden.

To set you free from the tedious work, VisualTCAD provides scripting functionality in several modules, which, among other things, can generate the device structure automatically. More importantly, one does not have to write the scripts from scratch. In the case of device drawing, after one drew a first device strucuture in GUI, he can export the drawn structure to a script file. One then use this generated script file as the template, and with minor modifications, run the script to generate new device structures.

The scripting language in VisualTCAD is Python, which is a general purpose programming language with many useful libraries and utilities. In this section, we shall see some examples on scripting in a few modules of VisualTCAD.

Example 1: Curve Plotting

We creat a new X-Y Plot window, and in the menu choose Plot > Run Python script to run the script plot.py located in the examples/VisualTCAD/script directory. Curves are plotted in the window, as shown in Figure 2.56, p. 54. This figure has two group curves and the first group has two curves.

Figure 2.56 script build plot result

Let us look at the script file for details. In the following code segment, we first insert a curve group at position 0 (first group), which may contain a set of curves.

We then define two arrays of numbers, xData and yData. One observe that they have the same number of items, and the corresponding items follow the relation $y = x^2$. The next two commands define some curve properties such as a color, line style and symbol style, and assign a title to the curve. Finally, we insert the curve to group 0, and at position 0 in the group. The two numerical arrays are used as x- and y-coordinates of the curve.

The following two lines illustrates how to use the list constructing syntax of Python to define two numerical arrays for plotting the function $y = x^2$.

```
xData = [i*pi/6 for i in xrange(13)]
yData = [sin(x) for x in xData]
```

Example 2: Spreadsheet

After creating a new Spreadsheet window, we choose in the menu Spreadsheet Run Script to run the spreadsheet.py script, the result is shown in Figure 2.57, p. 56.

E×	plorer Start Sp	readsheet Tools					SpreadShe	et: spreadsheet123	
	Spreadsheet To	ols 🗗			kljfdk				
	* # # #		1	1	1	2	1	1	
	Column Name	Properties	2	2	2	4	2	2	
1			3	3	3	6	3	3	
2	kljfdk		4	4	4	8	4	4	
з		abs(cols[1]+cols[:	5	5	5	10	5	5	
4			6	6	6	12	6	6	
5									
6									

Figure 2.57 script build spreadsheet result

Some explanation of the script follows. The function setColumnData is for setting entries of a column using the data in a numerical array. In this example, we define an array colData and assign it to column 0.

```
# set column data
colData = [1,2,3,4,5,6]
spreadsheet.setColumnData(0,colData);
...
```

One can apply mathematical expression (coded in Python) to the data of some columes, and assign the result to a column. The following segment shows how to calculate the absolute value of the sum of the first two columns, and assign it to the 3rd column in the spreadsheet.

```
# calc Column
spreadsheet.calcColumn(2, "abs(cols[1]+cols[2])");
```

One can get and set title of columns with the getColumnName and setColumnName functions, and save the spreadsheet to a file using the saveToFile function.

Example 3: Building MOSFET Device Structure

After creating a new device 2d window, we choose in the menu Device \triangleright Run Python Script to run the script file named mosfet.py. A MOSFET structure is created by the script, as shown in **Figure 2.58**, p. 57.

Figure 2.58 script build the MOSFET device structrure

The first section of the script consists of commands to draw outlines of the device. As an example, in the following segment, we define a polygon with the coordinates of its corner points. Note that the last point coincide with the first, so that it forms a closed polygon. Then we add the polygon the the device structure using the function addPolyLineItem:

```
# PolyLineItem (#0)
points = (-400,0),(400,0),(400,1000),(-400,1000),(-400,0)
device2d.addPolyLineItem(points)
```

The second section defines the material regions of the device. As shown below, each region must have a label and a material name. A point in the region (pos) is used to identify among the many regions in the structure. Optionally, one can set mesh area constraint and assign a color. Finally, the region label is added to the device with the function addRegionLabelItem.

57

The next section of the code defines mesh-size-control items. We wish to divide the segment (-80,60)-(80,60) by at least 8 mesh grids. We add this constraint with the addMeshSizeCtrlItem function, as shown below.

```
# MeshSizeCtrlItem (#116)
division = 8
points = (-80,60),(80,60)
device2d.addMeshSizeCtrlItem(division,points)
```

One important step is to set the doping profiles in the device. In the following lines, we define the source LDD doping profile, which has a gaussian distribution function. The profile attributes such as baseline, depth, normal direction, characteristic lengths, xy ratio, label of the profile, peak doping concentration, doping type, and doping species, must be set. The doping profile is then added with the function addDopingProfileItem.

We can save the completed device structure to file. A mesh is needed for simulation, and the doMesh function is invoked for this purpose. Finally, we export the mesh in the TIF format so that it can be used in simulations. Scripting and Automation

Tutorials

```
## save to file
device2d.saveToFile('/home/user/example/mosfet.drw');
## do mesh
device2d.doMesh()
## export mesh
device2d.exportMesh('/home/user/example/mosfet.tif');
```

Example 4: Using More Than One Window:

After simulating the MOSFET constructed in the last section, we can plot the Id-Vg curves use script file. An example script for this is provided (p18.py), and the result is shown in **Figure 2.59**, **p. 60**.

Figure 2.59 script build Id-Vg curve plot result

This involves two modules in VisualTCAD, spreadsheet and plotting, and the script must operate at the global scope, using the mainwindow object mw. We open this script file in VisualTCAD's text editor, and run it with the menu item Tools ▷ Run as Python Script.

The script first opens the simulated IV data p18/result.dat and p18vd2/result.dat in two spreadsheet windows, using the openDocumentFromFile function. User will need to modify the path to the data filename. Then it creates a new plotting window.

```
# open spreadsheet file
file = '/home/user/p18/result.dat'
mw.openDocumentFromFile(file)
# open spreadsheet file
file = '/home/user/p18vd2/result.dat'
mw.openDocumentFromFile(file)
plotA = mw.newWindow("Plot","plot2")
```

The windows are numbered, we obtain the spreadsheet with the getWindowByNumber function, and read data from it. The curve is then added to the plotting window, as we have done in the first example.

```
# insert Curve 1 in Group 0
spreadsheet = mw.getWindowByNumber(2);
Xdata = spreadsheet.getColumnData(3)
Ydata = spreadsheet.getColumnData(2)
properties = {'hasLine':1,'lineColor':'#ff0000',
                               'lineStyle':1, 'lineWidth':1,'hasSymbol':1,
                                'symbolColor':'#ff00ff', 'symbolStyle':0,
                             'symbolSize':6,'symbolFilled':1}
title = 'vds=0.2V'
plotA.insertCurve(0,1,Xdata,Ydata,title,properties)
```

One can use scripts to operate on more windows to automate TCAD simulation and data analysis, as in the testMainWindow.py script, and the result is shown in Figure 2.60, p. 61.

Figure 2.60 script build testMainWindow result

Summary

With these examples we illustrated how one can use scripting for generating the device structure, plotting the 2D curves and manipulating spreadsheets, etc. Through scripting, one can save much time and increase the efficiency of TCAD simulation and analysis.

Device Drawing

Structure Drawing

Menu	lcon	Description
Adding Geometry Ite	em	
Add Point		Add a point item to the drawing.
Add Polyline	5	Add a polyline item to the drawing.
Add Rectangle	П	Add a rectangle item to the drawing, which will be converted to a closed polyline item.
Add Arc	C	Add a circle arc item to the drawing.
Add Circle		Add a circle item to the drawing.
Add Spline	\$	Add a spline item to the drawing.
Labeling Device Reg	gion and Boun	dary
Add Region Label	T	Add a material region label to the device structure.
Add Boundary Label	T	Add a boundary label to the device structure.
Selecting Objects		
Select Object		Select a graph item (polyline, rectangle, arc, etc.), a label or a mesh-size-con- straint item. This also switches to the solid editing mode for moving objects.
Select Point	\$1°	Select a vertex point. This also switches to the rubber-band editing mode for moving vertices.
General Editing Ope	erations	
Edit Properties	=	Edit properties (e.g. coordinates of polygon vertices) of the current drawing item.
Make a Clone		Make a copy of the selected drawing items.
Mirror Horizontally	۵D	Flip the current drawing item in the horizontal direction.
Mirror Vertically	4	Flip the current drawing item in the vertical direction.
Move points	1	Enter the corner point editing mode. User can select a vertex in the highlighted polygon and move the vertex.

GUI Reference

Menu	lcon	Description
Snap		
Auto Snap	*	Enter the automatic snapping mode. Mouse coordinates are snapped to a nearby grid point or a vertex in existing drawing.
Grid Snap		Enter the grid snapping mode. Mouse coordinates are snapped to a nearby grid point.
Line Snap	/ +	Enter the line snapping mode. Mouse coordinates are snapped to a point on a nearby line segment.
Horizontal Line Snap	***	Enter the horizontal line snapping mode. Mouse coordinates are snapped to a point on a nearby line, the line segment currently being drawn is kept horizontal.
Vertical Line Snap	*	Enter the horizontal line snapping mode. Mouse coordinates are snapped to a point on a nearby line, the line segment currently being drawn is kept vertical.
No Snap	+	Enter the free-hand drawing mode. No snapping of coordinates is applied.

Polygon Properties Dialog

	×	у	
1	-0.14	0.06	1
2	-0.14	1.4211e-17	
3	-0.12	1.4211e-17	
4	-0.08	0.06	
5	-0.14	0.06	2

Figure 3.1 Polygon Property Editing Dialog.

Description

if neccessary, divide the dialog items into a few categories.

- 1 x- and y-coordinates of the first corner point of the polygon
- 2 Coordinates of the last corner point of a polygon must coincide with the first corner.

Add Region Label

Device Drawing

Placing Region Labe)
Basic Parameters	
Region Label	Region
Material	Si 2
Symbol Color	Select 3
Max. mesh size (um)	0.1 4
Doping Species	
Doping Species	Donor 👻
Concentration (cm^-3)	le+16
Mole Fraction	
[x=	[y=
	🥔 OK 🛛 💥 Cance

Figure 3.2 Add Region Label.

Description

- 1 Inputs the name of the region label, each region has one name, it can not be reused
- 2 Selects the material for the region from genius material library, more than 50 choices
- 3 Selects the symbol color for the region
- 4 Sets the maxmum mesh size for the region material
- 5 Selects the doping species, it can introduce uniform doping profile for the region

Add Boundary Label

VisualTCAD.LIN	uх	_ 🗆 X
Boundary Label		1
Symbol Color 📘	Select	2
	<i>о</i> к	🗶 Cancel

Description

- 1 Inputs the boundary label name, its properties can be set in boudary command 2
 - Selects the symbol color for the boundary

Edit properties

#

#

1

Description

- x- and y-coordinates of the first corner point of the polygon, double click to change the coordinate value.
- 2 Coordinates of the last corner point of a polygon must coincide with the first corner.

	x	У
1	-0.14	0.06
2	-0.14	1.4211e-17
3	-0.12	1.4211e-17
4	-0.08	0.06
5	-0.14	0.06 2

Figure 3.4 Edit properties.
Device Drawing

Device and Simulation

Menu	lcon	Description
Profiles and Mesh Setting	gs	
Add Doping Profile	—	Add a impurity doping (donor or acceptor) profile to the device.
Add Mole Fraction Profile	A _{hos} B	Add a mole fraction profile for the compound semiconductor material in the device.
Set Mesh Size Constraint		Add a mesh size contraint item to the device.
Meshing		
Do Mesh		Generate a mesh for the device.
Refine Existing Mesh		Refine the existing mesh.
Mesh Quality Statistics		Show statistics on the mesh quality.
Mesh 3D View		Show 3D visualization of the mesh and doping profile.
Delete Existing Mesh		Destroy the existing mesh grid.
Input/Output		
Save Mesh to File		Save the generated mesh to a file in TIF format.
Run Python Script		Run a device drawing Python script.
Export Python Script		Export the procedures to draw the present device as a Python script.

Add Doping Profile

VisualTCAD provide total 4 kinds of doping profiles recently, including Uniform Doping Profile, Gaussian Doping Profile, Erf Doping Profile and Dataset Doping Profile etc.

> Uniform Doping Profile Gaussian Doping Profile Erf Doping Profile **Dataset Doping Profile**

Figure 3.5 Doping Profile Type.

Uniform **Doping Profile**

#

Description

- Inputs Doping Profile name
- 1 2 Chooses Doping Species: Donor or Acceptor
- 3
- Inputs Concentration of the Uniform Doping Profile
- 4 Uniform Doping Profile, in the bound region the doping profile is uniform distribution and out of the bound region has none doping distribution

Gaussian **Doping Profile** Genius Device Simulator

#	Description
1	Inputs Doping Profile name
2	Chooses Doping Species: Donor or Acceptor
3	Inputs Concentration of Doping Profile, two styles to choose: concentration peak or Total Dose.
4	Characteristic Length, two styles to choose: Y Characteristic Length or Doping Concentration at depth, the Distance to doping Box parameter is a relative depth to the edge of bound rec- tangle. The doping setting has 4 groups total, but the combination of Total Dose and Doping Concentration is invalid.
5	Sets XY Ratio, the value is equal to X.char/Y.char
_	

6 Gaussian Doping Profile, in the bound region the doping profile is uniform distribution and out of the bound region the doping profile is gaussian distribution

Danie Presmatere			Concerts.
Basic Parameters —			_
Profile Name			1
Doping Species	Donor	2	
Concentration (cm^	-3) 1e+16		3
Profile Bound Rectan	gle		4
Baseline Point 1	(-0.3	, -0.2)
Baseline Point 2	(0.1	, -0.2)
Height (um)	0.1		
Orientation	🔾 Left 🖲	Right	
			Cancol

Figure 3.6 Uniform Doping Profile.

GUI Reference

Device Drawing

Profile Name				1
Doping Species		Donor	-2	
Peak Concentration	on (cm^-3)	le+16		6
○ Total Dose (cm^	-2)	1e+13		
Characteristic Length	ı			
Y Characteristic L	ength (um)	0.1		4
O Concentration by	Distance to	Doping Box		
Distance to Dopi	ng Box (um)	0.2		
Concentration (ci	m^-3)	le+16		
XY Ratio (=X.char/Y.c	har)	1		5
Profile Bound Rectan	gle			6
Baseline Point 1	(-0.27		0.12)
Baseline Point 2	(0.12	,	0.12)
Height (um)	0.09			
Orientation	⊖ Left	t 🖲 Right		

Figure 3.7 Gaussian Doping Profile.

Erf Doping Profile

#	Description
1	Inputs Doping Profile name
2	Chooses Doping Species: Donor or Acceptor
3	Refers to Gaussian doping Profile
4	Refers to Gaussian doping Profile
5	Refers to Gaussian doping Profile
6	Erf Doping Profile, in the bound region the doping profile is uniform distribution and out of the bound region the doping profile is erf distribution

Profile Name				1
Doping Species		Donor	1	
Peak Concentration	on (cm^-3)	1e+16		
○ Total Dose (cm^	-2)	le+13		3
Characteristic Lengtl	h			
Y Characteristic L	ength (um)	0.1		4
 Concentration by 	Distance to	Doping B	ox	
Distance to Dopi	ng Box (um)	0.2		
Concentration (c	m^-3)	1e+16		
XY Ratio (=X.char/Y.c	:har)	1		5
Profile Bound Rectan	gle			
Baseline Point 1	(-0.27		, 0.12	-6,
Baseline Point 2	(0.12		, 0.12)
Height (um)	0.09]	
Orientation	🔘 Left	t 🖲 Right	t	

Figure 3.8 Erf Doping Profile.

DatasetChooses profile dataset style, total 3 kinds of dataset doping: only 1D, only 2DDoping Profileand Both.

Description

#

- 1 Inputs Doping Profile name
- 2 Chooses Doping Species, Donor or Acceptor
- 3 About only 1D option, importing the one-dimension doping data, it incuding 2 columns, first column is coordinate and its unit is \$\nMeter\$, the second column is doping concentration and its unit is \$\ICubic\cMeter\$. the doping data can come from the opened data file or look for the data file by the data path.
- 4 When VisualTCAD introduces the data from the data file, VisualTCAD needs interpolation the mesh point data, the default linear interpolation, here provides the logarithmic interpolation, also.
- 5 In the bound rectangle region introduces one-dimension dataset file, the baseline from point1 to point2 is the begin of the one-dimention doping data, the end of doping profile is expanded to the edge of the box, out of the bound region has none doping distribution.

#

1

Description

About only 2D option, importing the two-dimension doping data, it incuding 3 columns, first column is x-coordinate and its unit is \$\nMeter\$, the second column is y-coordinate and its unit is \$\nMeter\$, the third column is doping concentration and its unit is \$\ICubic\cMeter\$. the value of the rectangle has been changed to 0, it means only the baseline from point 1 to point 2 is significative, VisualTCAD makes the center of the baseline as the 2D doping origin, the doping data file introduces the two-dimension doping profile from the center of the baseline to the doping coordinate of the doping file, the x-coordinate positive direction is left direction.

Place Dataset Do	ping Profile		
Profile Name Doping Species Don	or 9		1
Only 1D Only 2	D Both		3
#	This pro	file only have 1D d	ataset
Dataset			
Logarithmic Inter	oolation		
Profile Bound Rectan	gle		
Baseline Point 1	(-0.3	, -0.2	5)
Baseline Point 2	(0.1	, -0.2)
Height (um)	0.1		
Orientation	🔾 Left 🖲	Right	
<u></u>		🖉 ОК	Cancel

Figure 3.9 1D Dataset Doping Profile.

Dataset Doping Profile

1

Description

About Both option, in the bound rectangle region the doping profile is as the same as only 1D option and the doping data from 1D data, out of the bound rectangle region the doping profile is as the only 2D option doping profile and the origin is the the box baseline point2, and the left 2D doping of the box is symmetric with the right of the box. in the bound region is significant only for one-dimension doping data, out of the bound rectangle, the point 1 and point 2 is significant for two-dimension doping data.

Place mole Fraction Profile

If the device includes the polycompound material, VisualTCAD introduces 2 methods to place the mole fraction of the compound, linear fraction and gaussian fraction.

Linear mole Fraction Profile Genius Device Simulator # 1 2

Description

- 1 Inputs the linear mole fraction profile name
- 2 Inputs the range of mole fraction profile
- 3 The linear mole fraction profile is introduced to the bound rectangle region from the baseline to the end of the bound rectangle

Place Dataset Dop	oing Profile		
Profile Name			
Doping Species Donc	or 💌		
Profile Dataset]
Only 1D Only 20	D Both		
#	This profi	le only have 2D d	lataset
Dataset			
🗌 Logarithmic Interp	olation		
Profile Bound Rectang	gle		
Baseline Point 1	(-0.3	, -0.2)
Baseline Point 2	(0.1	, -0.2)
Height (um)	0.1		
Orientation	🔾 Left 🖲	Right	
		🖉 ок 🔰	🕻 Cancel

Figure 3.10 2D Dataset Doping Profile.

Gaussian mole Fraction Profile

Description Inputs the gaussian mole fraction profile name Inputs the parameter of the gaussian mole fraction, including the peak, characteristic length and ratio. Gaussian mole fraction Profile, in the bound region the doping profile is uniform mole fraction

Gaussian mole fraction Profile, in the bound region the doping profile is uniform mole fraction and out of the bound region the mole fraction profile is gaussian distribution.

GUI Reference

Device Drawing

Place Linear Mole	e Fra	ction P	rofile		
Profile Name	l				1
Linear Mole Fraction	Paran	neters –			
⊂ Rang of mole frac	tion >	(2
Mole fraction fr	om		0		
	om				
Mole fraction to)		0		
┌ □ Rang of mole f	ractio	n Y			
Mole fraction fr	om		-		
Mole naction n	om		_		
Mole fraction to)				
Profile Round Postar	alo				0
Pacolino Point 1	igie /	0.2			
		-0.2		, -0.4	,
Baseline Point 2	(0.2		, -0.4)
Height (um)		0.2			
Orientation		○ Left	Rigi	ht	

Figure 3.12 Linear Mole Fraction Profile.

Device Drawing

GUI Reference

Place Gaussian Mole Fractio	n Profile 🔲 🕽
Profile Name	1
Characteristic Length	
Char length of mole X	2
reak	
Y Characteristic Length (um)	0.1
XY Ratio (=X.char/Y.char)	1
XY Ratio (=X.char/Y.char)	
Profile Bound Rectangle	3
Baseline Point 1 (-0.2	, -0.4)
Baseline Point 2 (0.2	, -0.4)
Height (um) 0.2	
Orientation O Le	eft 🖲 Right
	🖉 OK 🛛 🗶 Cancel

Figure 3.13 Gaussian Mole Fraction Profile.

Device Drawing

rofile Name			
oping Species Don Profile Dataset Only 1D Only 2	or 👻 D Both		1
	This profi	le have 1D & 2D c	lataset
1D Dataset			
2D Dataset			
Logarithmic Inter	polation		
Profile Bound Rectan	gle		
Baseline Point 1	(-0.3	, -0.2)
Baseline Point 2	(0.1	, -0.2)
Height (um)	0.1		
Orientation	🔾 Left 🖲	Right	

Figure 3.11 Both 1D&2D Dataset Doping Profile.

Do mesh

Minimum triangle angle	fast best 20
🗌 Mesh Refinement Control —	
Maximum doping difference	fine coarse 3
🕱 measure as signed-log: sig	gn(x)*log(1+ x])

Description

1

The minimum angle constraint of the triangle mesh is from 15 to 32 degree, the triangle angle is wider the mesh quality is better, but at the same time the rate of generating mesh is become slow

Description

Refine

Figure 3.15 refine.

Description

- 1 Calculates the doping Gradient and Specifies the refinement is based on the specified quantity logarithm.
- 2 Refinement the mesh in doping Gradient greater than or equal to an order of magnitude, here the range of doping Gradient is from 1 to 5.

Mesh Statistics

-	VisualTCA	D.LINUX				×			
	Nesh Statistics Point Number : 2145 Triangle Number: 4096								
	Mesh Size Statistics								
	Min area: 1.953E-03um^2 Max area: 1.953E-03um^2								
	Mesh Qual Min ang	ity Statis 1e: 45 - N	stics Max ang	le: 90	2				
	Triangle	angle hist	togram:						
	0-10	0	1	90-100)	0			
	10-20	0	1 3	100-110)	0			
	20-30	0	1 :	110-120)	0			
	30-40	0	1 3	120-130) (0			
	40-50	8192	1 3	130-140)	0			
	50-60	0	1 3	140-150) (0			
	60-70	0	1 3	150-160) (0			
	70-80	0	1 3	160-170) (0			
	80-90	4096	1 3	170-180)	0			
ОК									

Figure 3.16 mesh statistics

Device Drawing

#	Description
1	Statsitics the mesh point number, triangle number, mesh size and mesh quality etc.
2	Statistics the disposition of the triangle angle

Mesh 3D view

Description

User can rotate the structure in the windows and view in any visual angle

Save mesh file to

#

1

Save Me	esh to tif file		
Look in:	🔁 /home/jidm/p18	<mark>1-</mark> 000) 🔗 🔃 🗉
E Compu	uter		
ile <u>n</u> ame:	[p18]	2	Save

Figure 3.18 Save Mesh File To.

GUI Reference

#	Description
1	Chooses the file's saving path
2	Inputs the file name and save the mesh structure file

Run python

💾 Open File	
Look in: 📔 /home/jidm/python	1,000 & 🖽 🗉
<pre>examples jidm home </pre>	
File <u>n</u> ame:	2
Files of type: Python Script Files (*.py)	✓ Cancel

Figure 3.19 run python.

- 1 Chooses the exist python file's path
- 2 Selects the python file and open it

Export python

🚆 Save File				
Look in: 📔	/home/jidm/python	1-0	00	🙈 ☷ 🗏
⊘ examples jidm im home	procDopDatpy			
File <u>n</u> ame:		2		<u>S</u> ave
Files of type: Pyt	hon Script Files (*.py)		-	🗶 Cancel

Figure 3.20 Export python.

Device Drawing

#	Description
1	Chooses the file's saving path
2	Inputs the file's name and saves the python deck file

Device View

Menu	lcon	Description
Device View		
Fit to View		Center the device drawing, and scale it to fit the screen size.
Center Origin Point	H	Center the screen at the origin of the device coordinates.
Zoom In	•	Zoom in, with the point under the mouse cursor fixed in view.
Zoom Out		Zoom out, with the point under the mouse cursor fixed in view.
Ruler	[*+]	Add a ruler item for measure the linear distance between two points.

Device Simulation

Simulation Setting

Menu	lcon	Description
simulation setting		
Load		Open a structure file.
Resistive Metal		Turn on the resistive metal model (new in 1.7.1).
Run		Running the device simulation.
Write Deck File		Save the device simulation configuration to a directory, which will contain the command file (.inp) and mesh file (.cgns) and data files (if needed).
Solve		
Time Control	\bigcirc	Time parameters in Transient simulation.
Sweep Control		DC sweep parameters in DC Steady-state simulation.
Boundary Condition		Boundary and Contact settings of the device.
Physical Model	yr Yr	Physical Model and Material Model parameters.
Solver Options	\$\$\$	Numerical solver paramters, including Number of Processors in parallel simulation.
Output		
Show IV Data		Open the IV data file.
Show Visualization	7	Open the .vtu file to visualize the internal variables (potential and carrier con- centrations, etc.) in the device.

Load

#	Description
1	Chooses the exist structure file's path
2	Selects the structure file and open it

Choose the structure file						
Look in: 📔 /home/jidm/python	1-	G	Ο	0	Ø	:: =
 examples jidm home 						
File name:	2	_	_			<u>O</u> pen
Files of type: Structure files (*.tif *.cgns *.grd *.tif3d)				•	×	Cancel

Figure 3.21 load structure file.

Resistive Metal

When the device exist the boundary of the metal, user should be set it to "Soder pad" Boundary and open the "Resistive Metal" button before load the device structure in the "Device Simulation" window.

Figure 3.22 define boundary.

Description

#

- 1 Choose boundary tool
- 2 Add boundary label(Anode and Cathode)

Figure 3.23 change boundary setting.

Description

- 1 In "Device Simulation" window, load the mesh, and click "Boundary Settings"
- 2 Click "More>>" to see the full list
- 3 Change from "Neumann" to "Ohmic" and "Solder pad" boundary conditions, respectively.

Run simulation

1

Description

When user runs the simulation, VisualTCAD will remind user to save the simulation settings before running it

write deck file

#

1

Description

User can transform the simulation to genius deck file and run the deck file in Genius to finish the simulation.

Time Control

Start Time	٥	s	-
Step Time	0	s	-
Stop Time	0	s	-
			100
Max. Step Time Options Max. voltage ste	0 p (V): O Default:	not limited	
Max. Step Time Options Max. voltage ste Predict next sol	0 p (V): Default:	not limited	

Description

1

- For transient simulation, the time control setting needs set start time, step time, stop time and Maxmum step time etc.
- 2 Other options, user can choose to set maxmum voltage step

Boundary condition

Description

#

3

- 1 Clicks to choose the boundary
- 2 Chooses the contact type, total includes many types, here chooses the ohmic contact
 - Sets ohmic contact parameters, some contact have no parameters, such as Neumann boundary.
- 4 Sets boundary z width, the priority is higer than global z width setting.

oundaries and Con	tacts	Electrical	Thermal	
Boundary Drain Gate Source Substrate	Type Ohmic contact Gate contact Ohmic contact Ohmic contact	Type Resistance Capacitance Inductance	Ohmic contact 0 0 0 0 0 0	3

Figure 3.27 Boundary condition.

physical model

UP CHICK DI CHICK				
Global Parameters	Physical Models	Material Models		
External Temperature	300	К 🔻	1	
Z Width	1	μm 🔫		
Physical Equations	Basic Drift-diffusi	ion 🚽	2	
	R.			

Figure 3.28 Global model.

#

2

Description

- Sets global parameter, temperature and z width parameters
- Chooses the physical equations, including Basic Drift-diffusion equations, Drift-diffusion equations with lattice heating and Energy-balanced drift-diffusion equations. Here chooses Basic Drift-diffusion equations

Figure 3.29 physical model.

Description

1

- Sets physical model of silicon material and other materials choosing the default model
- 2 Carrier statistics, chooses Boltzmann distribution or Fermi-Dirac distribution. Energy balance equaption, When the Energy-Balance equation solver is selected in the METHOD command, this parameter selectively enables the equations for lattice temperature, electron temperature and hole temperature.
- 3 Transverse E-Field, Use effective surface electric field for carrier mobility calculation at insulator-semiconductor interface. Longitudinal, Synonym to Mobility.Force. When H.Mob is enabled, this parameter selects the driving field used in high-field mobility calculation.
- 4 When ImpactIonization is enabled, this parameter selects the driving field used in impact ionization coefficient calculation. including Qf Gradient, E dot J, E along mesh-edge and simple E field.
- 5 Activates the Band-to-Band Tunneling (BBT) generation, and selects whether the BBT generation should be calculated with the local model or the non-local model. Only the local model is currently implemented. Whether the Carrier trapping is enables

Description

#

1

- Sets material model of silicon material and other materials choosing the default model
- 2 Basic model, including Default model only
- 3 Basic model, user can modify the parameter of the model by clicking the right button Add Property and input the parameter Name and Value. User can inputs print as the parameter Name and 1 as the Value, then runs the simulation, all parameters setting of the selected model are printed in Log file.
- 4 Other Material model, using the same method, user can modify other model by modifying the model parameters, the model including Band, Impact, Mobility, Optical, Thermal and Trap.

nobarrarameters	Physica	I Models Mate	erial Models	
Region	Material	Туре	Basic	
Drain Gate Source Substrate Spc1 Spc2 Substrate	Al NPolySi Al SiO2 Nitride Nitride Si	Electrode regio Electrode regio Electrode regio Electrode regio Insulator region Insulator region Insulator region Semiconductor	Model Default 2 Parameters Name Value	1 1 1 1 1
			Band	
			Band	
			Band Impact Mobility	
			Band Impact Mobility Optical	
			Band Impact Mobility Optical Thermal	

Figure 3.30 material model.

Solver Options

Ö VisualTCAD.LINUX	
Non-Linear Solver Options Number of Processors 1 Maximum iterations 30 Update damping Potential damp Potential damping factor 1.00	1 2 ing ▼ 3
Misc. Options Truncate voronoi cell Always truncate Linear solver type Direct (MUMPS)	4
Restore Defaults 🥥 🖉 OK	Cancel

Figure 3.31 Solver options.

- 1 Chooses the number of processor of simulation
- 2 Chooses the maxmum iterations, the default setting is 30
- 3 Chooses whether using update damping and sets potential damping factor
- 4 Selects the element truncation strategy used in simulation, including Always truncate, Never truncate and truncate at boundary.
- 5 Selects the linear solver algorithm, including Direct(MUMPS), Direct(SuperLU), iterative(BCGS+ASM) and iterative(BCGS+ILU).

Circuit Schematics

Place Circuit Component

Menu	lcon	Description
device setting		
Component	=>-	Add a Spice component (compact model) to the circuit.
Numerical Device		Add a numerical device to the circuit, for mix-mode simulation.
Common Circuit Compone	ents	
Ground	<u>+</u>	GND.
Resistor	¢	Add a resistor component.
Capacitance	÷	Add a capacitor component.
Inductance	1 H	Add an inductor component.
Probe		
Voltage Probe	<u>₹</u>	Add a voltage probe to the circuit, for monitoring voltage difference between two circuit nodes.
Current Probe		Add a current probe to the circuit, for monitoring current through a circuit branch.
Connection		
Wire	l	Add wirings to the circuit.

Component

#	Description
1	According to user need to select component
2	Simple description of the component
3	Component preview window

Component Selection -	Component Description	
74HC04 74HC08	Lubrary: 74HC04	
	Component Preview	
	X?	
	∽74HC04	

Figure 3.32 Component.

Numerical Device

1,000 & 1
7)

Figure 3.33 Numerical Device.

Description

- 1 Load the device component file's path
- 2 Selects the device component file and opens it

Circuit Schematics

Simulation Control

Menu	lcon	Description
Circuit simulation setti	ng	
Simulation Setup		Choosing the analysis type and setting analysis parameters.
Solver Options	\$ <u>1</u>	Numerical solver paramters, including Number of Processors in parallel simulation.
Run Simulation		Start the simulation.
Check Netlist		Check the validity of the circuit netlist.
View Netlist		Viewing the netlist file (in SPICE format).
Write Deck Files		Save the circuit simulation to a directory, which contains the circuit netlist, Genius command file, mesh file and other data files (if needed).

Setup Simulation

Analysis Type Transie	nt 🔽				
Transient Settings			_		
Stop Time:	0.0	s	• 2	2	
Time Step:	0.0	s	-		
Max Time Step:	0.0	s	-		
	Use Initial Co	onditions			
Max. voltage step (V):	Default: not	limited			
	01		V 🔫		
Predict next solution:	yes 🔻				
Auto-adjust time step:	ves 🔻				
Initial OP Analysis Optic Number of Source Ran	ons	•	3		
Initial OP Analysis Optic Number of Source Ran Max. Voltage Step	ons np-up Steps 0 in Ramp-up ●	Default: n	3 ot limited		
Initial OP Analysis Optic Number of Source Ran Max. Voltage Step	ons np-up Steps 0 in Ramp-up • O	Default: n	3 ot limited		•
Initial OP Analysis Optic Number of Source Ran Max. Voltage Step Initial Value of GM	ns np-up Steps 0 in Ramp-up • in Stepping •	Default: n	ot limited μS) (v	•
Initial OP Analysis Optic Number of Source Ran Max. Voltage Step Initial Value of GM	ns np-up Steps 0 in Ramp-up • in Stepping •	Default: n 0 Default: 1 1	ot limited µS) [V] [μ5	•
Initial OP Analysis Optic Number of Source Ran Max. Voltage Step Initial Value of GM Target of GM	ns np-up Steps 0 in Ramp-up • in Stepping • in Stepping •	Default: n 0 Default: 1 1 Default: 1	3 ot limited μ5 p5) V μ5	•
Initial OP Analysis Optic Number of Source Ran Max. Voltage Step Initial Value of GM Target of GM	nns np-up Steps 0 in Ramp-up • Uin Stepping • Uin Stepping •	Default: n 0 Default: 1 1 Default: 1	3 ot limited μS pS) V μ5) ps	•
Initial OP Analysis Optic Number of Source Ran Max. Voltage Step Initial Value of GM Target of GM	nns np-up Steps 0 in Ramp-up • lin Stepping • lin Stepping •	Default: n O Default: 1 1 Default: 1 1	3 ot limited μS pS) [ν] [μ5] [p5	•

Figure 3.34 Setup simulation transient analysis.

#

3

Description

- 1 Selects the analysis type, Here choosing transient simulation type
- 2 Sets the transient simulation condition
 - Initial operator point analysis options, including the number of ramp-up steps of the bigest nonzero External Source by Attach statement, the maxmum voltage steps, initial value of Gmin stepping and target of Gmin stepping. The perpose of the initial setting is making the simulation more convergence.

Analysis Settings	
Analysis Type DC Swee	ep 📕
OC Sweep Settings -Sweep Variable Voltage source	Sweep Range
 Current source Resistor 	Sweep Start: 0.0 V V Sweep End: 0.0 V V Sweep Step: 0.0 V V
Predict next solution nitial OP Analysis Option	O L V ▼ ves ▼
Max. Voltage Step ir	n Ramp-up Default: not limited
Initial Value of GMi	n Stepping Default: 1 µS 1
Target of GMi	n Stepping Default: 1 pS 1 p5 +
	🖉 OK 🛛 🗶 Can

Figure 3.35 Setup simulation DC sweep analysis.

- 1 Selects the analysis type, here choosing DC Sweep simulation type
- 2 Selects the sweep variable
- 3 Selects the sweep component and sets the sweep range

Description

- 1 Selects the analysis type, here choosing AC Sweep simulation type
- 2 Selects the AC sweep step spacing linear or logarithmic and sets the sweep range

Description # 1 2

- Selects the analysis type, here choosing Operation Point simulation type
- Here no settings are needed

			L 2
Analysis Type AC Sweep	3		
AC Sweep Settings			
AC Sweep Step Spacing	Log10 💌		
AC Sweep Step:	0.0	Hz 🔻	
AC Sweep Start Frequency:	0.0	Hz 🔻	2
AC Sweep End Frequency:	0.0	Hz 🔻	
-Initial OP Analysis Options —			
–Initial OP Analysis Options – Number of Source Ramp-up	Steps 0		
-Initial OP Analysis Options — Number of Source Ramp-up Max. Voltage Step in Rar	Steps 0	t: not limited	
–Initial OP Analysis Options — Number of Source Ramp-up Max. Voltage Step in Rar	Steps 0 🗣 np-up 🖲 Defaul	t: not limited	V •
-Initial OP Analysis Options	Steps 0 🔹	t: not limited	V
-Initial OP Analysis Options Number of Source Ramp-up Max. Voltage Step in Rar Initial Value of GMin Ste	Steps 0 • np-up • Defaul 0 0 epping • Defaul	t: not limited t: 1 μS	V v
-Initial OP Analysis Options Number of Source Ramp-up Max. Voltage Step in Rar Initial Value of GMin Ste	Steps 0 -	t: not limited t: 1 μS	V •
-Initial OP Analysis Options Number of Source Ramp-up Max. Voltage Step in Rar Initial Value of GMin Ste Target of GMin Ste	Steps 0 mp-up Defaul pping Defaul 1 pping Defaul Defaul	t: not limited t: 1 μS t: 1 pS	V + μ5 +
-Initial OP Analysis Options Number of Source Ramp-up Max. Voltage Step in Rar Initial Value of GMin Ste Target of GMin Ste	Steps 0 mp-up Defaul o epping Defaul 1 epping Defaul 1 1 1	t: not limited t: 1 μS t: 1 pS	V + μ5 + p5 +
-Initial OP Analysis Options Number of Source Ramp-up Max. Voltage Step in Rar Initial Value of GMin Ste Target of GMin Ste	Steps 0 mp-up Defaul o epping Defaul 1 c 1 1 1 1 1 1 1 1	t: not limited t: 1 μS t: 1 pS	V + μ5 + p5 +

Figure 3.36 Setup simulation AC sweep analysis.

Check netlist

Description

1

When user finishes the circuit schematic, user need check the netlist, when it is OK, user can run the circuit simulation.

Analysis Settings	
Analysis Type Operation Point 🚽 1	
Operation Point Settings	
	2
No settings are needed for this simulation	
-Initial OP Analysis Options	
− Initial OP Analysis Options Number of Source Ramp-up Steps 0 🗘	
– Initial OP Analysis Options Number of Source Ramp-up Steps 0 🚔 Max. Voltage Step in Ramp-up 🖲 Default	: not limited
Initial OP Analysis Options Number of Source Ramp-up Steps 0 - Max. Voltage Step in Ramp-up O Default	: not limited
 Initial OP Analysis Options Number of Source Ramp-up Steps 0 ♀ Max. Voltage Step in Ramp-up ● Default 0 0 Initial Value of GMin Stepping ● Default 	: not limited
Initial OP Analysis Options Number of Source Ramp-up Steps 0 Max. Voltage Step in Ramp-up 0 Initial Value of GMin Stepping 1	not limited 1 μ5 τ
Initial OP Analysis Options Number of Source Ramp-up Steps 0 Max. Voltage Step in Ramp-up O Initial Value of GMin Stepping Default I Target of GMin Stepping Default	: not limited : 1 μS : 1 μS
Initial OP Analysis Options Number of Source Ramp-up Steps 0 Max. Voltage Step in Ramp-up @ Default 0 Initial Value of GMin Stepping @ Default 1 Target of GMin Stepping @ Default	: not limited : 1 μS : 1 pS

Figure 3.37 Setup simulation operation point analysis.

View netlist

1

Description

According to the circuit schematic, VisualTCAD generates the netlist automatically, the netlist file includes circuit components and wire connection etc.

GUI Reference

Circuit Schematics

Figure 3.39 View netlist.

GUI Reference

Circuit Schematics

Result Analysis

Menu	lcon	Description
Simulation Results		
Load Spice Raw File Plot Probe Wave		Open the simulated waveform in a spreadsheet window. Plot the waveform of voltage and current probes.

Circuit Schematics

GUI Reference

Schematics View

Menu	lcon	Description
Schematics View		
Fit to View Center Origin Point Zoom In Zoom Out		Move the schematics to center and scale it to the fit the screen size. Move the schematics to center. Zoom in. Zoom out.

Device Visualization

View

Menu	lcon	Description
General Options		
Switch Background Color Inverse Y of View Point		Toggle the screen background color between black and white. Toggle the direction of the y-axis between up and down.
Camera Options		
Reset View	*	Reset camera position, orientation and focal parameters.
View at +X	**1	View the device from the direction of $+x$ axis.
View at -X	\$	View the device from the direction of -x axis.
View at +Y	1	View the device from the direction of +y axis.
View at -Y	21	View the device from the direction of -y axis.
View at +Z	+Z↑	View the device from the direction of $+z$ axis.
View at -Z	1 -z	View the device from the direction of -z axis.

Device Visualization

GUI Reference

Draw

Menu	lcon	Description
Device Drawing		
Draw Device Region Draw Device Material Draw Device Boundary Draw Mesh Device Variable Plotting	Kon Mat End	Plot the regions in the device structure. Plot the materials in the device structure. Plot the boundary and interfaces in the device structure. Plot the mesh elements in the device structure.
Draw Pseudo Color Draw Contour Draw Vector	「 「 」 「 」 「 」	Draw a pseudo color plot of the selected variable. Draw a contour line (surface) plot of the selected variable. Draw a vector plot of the selected variable.

Animating the simulation result

Menu	lcon	Description
------	------	-------------

Animation Control

First Frame		Show the first frame of the simulation results.
Previous Frame	\bigcirc	Show the previous frame.
Next Frame	\bigcirc	Show the next frame.
Last Frame		Show the last frame.
Play/Pause		Play (or Pause) the animation.

Add Frames

Add Frame(s)

Add frames (.vtu files) to the animation.

Spreadsheet

Menu	lcon	Description
Spreedsheet Operation		
Insert Row Insert Column Delete Row Delete column Plot Column Calculator		Insert one row in the spreadsheet. Insert one column in the spreadsheet. Delete the selected rows in the spreadsheet. Delete the selected columns in the spreadsheet. Plot the data in selected columns. Use mathematical calculator to calculate data entries in the selected column.
Scripting		

Run Python Script

Run a spreadsheet Python script.

Plot column

_ 🗆 🗙
data column
•
💥 Cancel

Figure 3.40 plot column.

#	Description
1	User need select at least two columns and set one column data as x-axis data column
2	

Calculator

#	Description
1	VisualTCAD offers calculate function, user can obtain the expression
2	The calculate data come from the column data.
3	The expression can include the function of VisualTCAD offers, including absolute value calculate and square calculate etc.

Spreadsheet

Calculator	X
Please enter the expression for column 12 Columns: Cols[1]: 0 [V] cols[2]: v2pog [V] cols[3]: v2pog [V] cols[5]: r1neg [V] cols[5]: r1neg [V] cols[6]: n1pin_g [V] cols[8]: n1pin_g [V] cols[1]: n1pin_b [V] cols[1]: n1pin_b [V] cols[1]: probe1pog [V] cols[1]: probe1pog [V]	Valid operators are + - * / Functions: abs(x) pow(x,e) sqrt(x) log10(x) sin(x) cos(x) tan(x) acos(x) atan(x) rinb(v)
cols[1]+cols[2]	1
	Gancel

Figure 3.41 Calculator.
XY Plotting Description Menu lcon **Plot Data Source** <u>ht</u> Insert curve in the current group. Insert Curve **1** Insert Group Insert group in the plot. Delete Delete the selected curve or group. **Edit Plot Properties** Edit the axis properties, e.g. the axis scale, range and tick marks. Edit Axis Properties Edit the curve properties, eg. the line style, symbol style and color. Edit Curve Properties Palette Manager Edit the plot curve style palletes. Input/Output Run a Python for curve plotting .. Run Python Script Export the current plot to a python script file. Export Python Script

Insert Curve

	- vanasies eo piec man		L
(Variable		Y Variables 2	
Name	Properties	Name	Properties
⊕ [result.dat ⊕ ramp1.dat	SpreadSheet	⊕-ramp1.dat ⊕-ramp1.dat	SpreadSheet SpreadSheet

Figure 3.42 insert curve.

#	Description
1	User can insert several curve to one plot, the x- and y-variable come from the open any data file. the left window is for choosing the x-variable and only can choose one column data.
2	The right window is for choosing y-variables, user can choose several column data as y variables at the same time.

Edit Axis Properties

Setting line/symbol styles.	
Left y-axis Bottom x-axis Right y-axis Top x-axis	Axis Scale Type Linear Scale
	Min Axis Voluo
	Max. Axis Value 7e-05
	Max. Major Divs. 8
	Max. Minor Divs. 5

Figure 3.43 Edit Axis Properties.

Description

- 1 User can edit the plot axis properties, inputs the left y-axis title
- 2 Selects the Axis Scale type, linear scale, logarithmic scale etc.
- 3 Inputs the range of value of the axis.

Edit Curve properties

X-axis Bottom Y-axis Left	
Style Solid line 2 Color Black Thickness 0	Style Square Color Black Size 6 Filled
	🥔 OK 🛛 🗶 Cancel

Figure 3.44 Edit Curve Properties.

XY Plotting

#	Description
1	User can edit each curve properties and slect each line axis style
2	Selects each curve line and symbol style

Palette Manageer

Palette Manager	
Palette1 Palette2 Palette3 Palette4 Palette5 Palette6 Palette7	
+ 2 - Restore Defaults	+ 3 -

Figure 3.45 Palette Manager.

Description

- 1 VisualTCAD offers 7 palettes for user
- 2 User can edit new palette
- 3 User can edit new curves of the selected palette and restore default palettes

Search

Menu	lcon	Description
Find		Search a string in the text.
Find Next		Go to the next match in the text.
Find Previous		Go to the previous match in the text.
Replace		Replace the matched string.

Find

🃝 Find		
Find		Find
Replace		Cancel
	🕱 Match case	
	Whole word only	
	Backward	
	Regular expression	

Figure 3.46 Find.

Description

- 1 Inputs the find text
- 2 Selects the properties

Replace

Replace		_ 🗆 🗙
Find		Replace
🗶 Replace	2	Cancel
	🕱 Match case	
	Whole word only	
	Regular expression	

Figure 3.47 Replace.

# Description	
1	Inputs the find text
2	Inputs the replace text
2	Selects the properties

Options

Menu

Icon Description

or no-highlight.

Font settings of the text window.

Spreedsheet

Syntax HighLight Mode

Font Settings

Font Settings

📝 Select Font		
Eont	Font style	Size
Courier 1	Normal 2	10 3
Bitstream Vera Sans Mono Bitstream Vera Serif Caladings CLM Century Schoolbook L Console Courier	Normal Italic Bold Bold Italic	6 ▲ 7 8 9 10 ▲ 11 ▼
Effects	Sample	
Stri <u>k</u> eout	Aa	BbYyZz
Wr <u>i</u> ting System		
Any	·	
		🦑 OK 🛛 🗶 Cancel

Highlight the text with the selected syntax mode, eg.Genius,Spice,Python,XML

Description

1 Selects the font

- 2 Selects the font style
- 3 Selects the font size
- 4 Other effects

Tools

Menu

Icon Description

Simulation Tools

Run As Genius Deck Run As SPICE Deck Run As Python Script Run Genius device simulator with the curent file as the command input. Run SPICE circuit simulator with the current file as the circuit deck. Run the text file as a Python Script. **GUI** Reference

Text Editor

4 Programming Reference

Device2D Drawing

Class Device2DScript

The Device2DScript exposes APIs for device2d drawing in python language.

Method scriptType

scriptType()

Returns Object name "device2dscript".

Method addPolyLineItem

addPolyLineItem(points)

Arguments points list, a list of points which to build a poly line. For example, points = (-400,0), (400,0), (400,1000), (-400, 1000), addPolyLineItem(points) will draw line((-400,0), (400,0)), line((400,0), (400,100)), line((400, 1000), (-400,1000)).

Method addRegionLabelItem

addRegionLabelItem(label,materail, pos, areaConstrain=0.01, strColor="#ffb6c1")

Arguments label string, name of the region label item.

material string, name of material which used in region.

pos point, region item position.

areaConstrain double, set region mesh area constrain.

strColor string, name of color which used in region.

Method addRegionDoping

addRegionDoping(label,property, concentration)

Arguments label string, name of the region. property string, property of region, "Nd" or "Na". concentration double, concentration of region.

Method addRegionMoleFraction

	<pre>addRegionMoleFraction(label, x, y=-1.0)</pre>
Arguments	label string, name of the region.
	x double, x fraction.
	y double, y fraction.

Method addDataset

	<pre>addDataset(xList, yList, vList, dsName="")</pre>	
Arguments	xList list, list of x coordinate position.	
	yList list, list of y coordinate position.	
	vList list, list of value.	
	dsName string, name of dataset.	
Returns	dataset label for this dataset, which append SHA1 to dsName.	
Method addDataset		
	<pre>addDataset(type, filename)</pre>	
Arguments	type string, 1D or 2D dataset file.	

Device2D Drawing

filename string, dataset file name.

Returns dataset label for this dataset, which append SHA1 to filename.

Method addDopingProfileItem

addDopingProfileItem(attr)

Arguments attr list, a list of name and value pair for profile item.

Method addMoleFractionItem

addMoleFractionItem(attr)

Arguments attr list, a list of name and value pair for mole fraction item.

Method addBoundaryItem

addBoundaryItem(label, segment, strColor="#ff0000")

Arguments label string, label for boundary item.

segment list, point p1 and p2 to decide item region.

strColor string, background color for item.

Method addMeshSizeCtrlItem

addMeshSizeCtrlItem(division, points)

Arguments division int, number of division.

points list, start point and end point to decide MeshSizeCtrlItem.

Method addRulerItem

addRulerItem(points)

Arguments points list, start point and end point to decide RulerItem.

Method addPointItem

addPointItem(point)

Arguments point list, (x, y) to decide PointItem.

Method doMesh

doMesh(optimization = 1, meshCmd = "pzADenQq30", max_d=3.0, signed_log=true)

Arguments optimization int, times to refine mesh.

meshCmd string, command to do mesh.

 max_d double.

signed_log bool.

Method exportMesh

exportMesh(filename)

Arguments filename string, name of tif file when export mesh.

Method clear

clear()

Method saveToFile

	<pre>saveToFile(filename)</pre>
Arguments	filename string, filename to save file, which can be relative or absolute filename, if relateive, save in current directory where program is running.

Method setTitle

setTitle(title)

Arguments title string, title for Device2D SubWindow.

Curve Plot			
PlotScript			
	The PlotScript exposes APIs for curve ploting in python language.		
Method scriptType			
	<pre>scriptType()</pre>		
Returns	Return the object name "plotscript".		
Method curveGroup(Count		
	curveGroupCount()		
Returns	Return the count of curve groups.		
Method curveCountAt			
	curveCountAt(group)		
Arguments	group int, group index.		
Returns	Return curve count at group group		
Method insertCurveGroup			
	<pre>insertCurveGroup(pos, groupTitle="Group", groupPalette = QStr</pre>	ring())	
Arguments	pos int, index of curve group.		
	groupTitle string, title for this curve group.		
	groupPalette string, palette name for this curve group.		
Method removeCurve	eGroup		
	removeCurveGroup(int pos)		

Curve Plot

Arguments pos int, index of curve group which will be deleted .

Method setGroupTitle

setGroupTitle(group, title)

Arguments group int, index of curve group.

title string, title for curve group.

Method insertCurve

insertCurve(group, pos, xData, yData, title = "curve", properties
= QVariant())

Arguments group int, index of curve group.

pos int, index of curve in curve group.

xData list, data for x coordinate.

yData list, data for y coordinate.

title string, title for the curve.

properties list, a list of curve properties.

Method clear

clear()

Method saveToFile			
	<pre>saveToFile(filename)</pre>		
Arguments	filename string, save to file with filename.		
Method setTitle			
	<pre>setTitle(title)</pre>		
Arguments	title string, title for plot subwindow.		

Genius Device Simulator

SpreadSheet

class SpreadSheetScript

The SpreadSheetScript class exposes APIs for spreadsheet operations in python language.

Method scriptType

<pre>scriptType()</pre>

Returns Return the object name "ssheetscript".

Method getColumnName

getColumnName(column)
----------------	---------

Arguments column int, index of column, index from 0.

Returns Return the name of column.

Method getColumnData

getColumnData(column)

Arguments column int, index of column, index from 0.

Returns Return data in column.

Method insertRows

\GSyntax{insertRows}(row, count)

Arguments row int, row index where rows will be inserted.

count int, number of rows will be inserted.

Method insertColums

insertColums(column, count)

Programming Reference

SpreadSheet

Arguments column int, column index where columns will be inserted.

count int, number of columns will be inserted.

Method setColumnData

setColumnData(column, data)

Arguments column int, index of column.

data list, assign data to column.

Method setColumnName

setColumnName(column, name)

Arguments column int, index of column.

name string, name for column.

Method calcColumn

calcColumn(column, expression)

Arguments column int, index of column.

expression string, expression to compute data for column.

Method saveToFile

saveToFile(filename)

Arguments filename string, save to file with filename.

Method setTitle

setTitle(title)

Programming Reference

Arguments setTitle string, title for spreadsheet subwindow.

Method clear

clear()

Class MainWindowScript

The MainWindowScript class exposes APIs for operations in top level in python language.

Method scriptType

<pre>scriptType()</pre>		

Returns Return the object name "mainwindowscript".

Method openDocumentFromFile

openDocumentFromFile(filename)

Arguments filename string, name of file which to open.

Method saveAllToFile

saveAllToFile(filepath)

Arguments filepath string, path to save content of all subwindow to file .

Method newWindow

newWindow(type, title)

Arguments type string, type of window, type can be "Device2D" "Plot" or "SpreadSheet".

title string, title for window.

Returns Return a pointer which point to created window, if failed, return NULL.

Method getWindowByName

getWindowByName(subWindowName)

MainWindow

Arguments	subWindowName	string,	name of subWindow.

Returns If find a subwindow which has name \GSyntax {subWindowName}, return a pointer which point to it, else return NULL.

Method getWindowByNumber

getWindowByNumber(number)

- Arguments number int, index of subwindow.
 - **Returns** If find a subwindow which has index \GSyntax {\GSyntax {number}}, return a pointer which point to it, else return NULL.